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Praise for 'Mastering Bitcoin'
“When I talk about bitcoin to general audiences, I am sometimes asked 'but
how does it really work?' Now I have a great answer for that question,
because anybody who reads Mastering Bitcoin will have a deep
understanding of how it works and will be well-equipped to write the next
generation of amazing cryptocurrency applications.”

— Gavin Andresen, Chief Scientist Bitcoin Foundation

“Bitcoin and blockchain technologies are becoming fundamental building
blocks for the next generation internet. Silicon Valley’s best and brightest
are working on it. Andreas' book will help you join the software revolution
in the world of finance.”

— Naval Ravikant, Co-founder AngelList

“Mastering Bitcoin is the best technical reference available on bitcoin today.
And bitcoin is likely to be seen in retrospect as the most important
technology of this decade. As such, this book is an absolute must-have for
any developer, especially those interested in building applications with the
bitcoin protocol. Highly recommended.”

— Balaji S. Srinivasan (@balajis), General Partner, Andreessen Horowitz

“The invention of the Bitcoin Blockchain represents an entirely new
platform to build upon, one that will enable an ecosystem as wide and
diverse as the Internet itself. As one of the preeminent thought leaders,
Andreas Antonopoulos is the perfect choice to write this book.”

— Roger Ver, Bitcoin Entrepreneur and Investor

Preface

Writing the Bitcoin Book
I first stumbled upon bitcoin in mid-2011. My immediate reaction was more or less "Pfft! Nerd
money!" and I ignored it for another six months, failing to grasp its importance. This is a reaction
that I have seen repeated among many of the smartest people I know, which gives me some
consolation. The second time I came across bitcoin, in a mailing list discussion, I decided to read the
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white paper written by Satoshi Nakamoto, to study the authoritative source and see what it was all
about. I still remember the moment I finished reading those nine pages, when I realized that bitcoin
was not simply a digital currency, but a network of trust that could also provide the basis for so
much more than just currencies. The realization that "this isn’t money, it’s a decentralized trust
network," started me on a four-month journey to devour every scrap of information about bitcoin I
could find. I became obsessed and enthralled, spending 12 or more hours each day glued to a
screen, reading, writing, coding, and learning as much as I could. I emerged from this state of
fugue, more than 20 pounds lighter from lack of consistent meals, determined to dedicate myself to
working on bitcoin.

Two years later, after creating a number of small startups to explore various bitcoin-related
services and products, I decided that it was time to write my first book. Bitcoin was the topic that
had driven me into a frenzy of creativity and consumed my thoughts; it was the most exciting
technology I had encountered since the Internet. It was now time to share my passion about this
amazing technology with a broader audience.

Intended Audience
This book is mostly intended for coders. If you can use a programming language, this book will
teach you how cryptographic currencies work, how to use them, and how to develop software that
works with them. The first few chapters are also suitable as an in-depth introduction to bitcoin for
noncoders—those trying to understand the inner workings of bitcoin and cryptocurrencies.

Why Are There Bugs on the Cover?
The leafcutter ant is a species that exhibits highly complex behavior in a colony super-organism,
but each individual ant operates on a set of simple rules driven by social interaction and the
exchange of chemical scents (pheromones). Per Wikipedia: "Next to humans, leafcutter ants form
the largest and most complex animal societies on Earth." Leafcutter ants don’t actually eat leaves,
but rather use them to farm a fungus, which is the central food source for the colony. Get that?
These ants are farming!

Although ants form a caste-based society and have a queen for producing offspring, there is no
central authority or leader in an ant colony. The highly intelligent and sophisticated behavior
exhibited by a multimillion-member colony is an emergent property from the interaction of the
individuals in a social network.

Nature demonstrates that decentralized systems can be resilient and can produce emergent
complexity and incredible sophistication without the need for a central authority, hierarchy, or
complex parts.

Bitcoin is a highly sophisticated decentralized trust network that can support a myriad of financial
processes. Yet, each node in the bitcoin network follows a few simple mathematical rules. The
interaction between many nodes is what leads to the emergence of the sophisticated behavior, not
any inherent complexity or trust in any single node. Like an ant colony, the bitcoin network is a
resilient network of simple nodes following simple rules that together can do amazing things
without any central coordination.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as
variable or function names, databases, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by
context.

TIP This icon signifies a tip, suggestion, or general note.

WARNING This icon indicates a warning or caution.

Code Examples
The examples are illustrated in Python, C++, and using the command line of a Unix-like operating
system such as Linux or Mac OS X. All code snippets are available in the GitHub repository in the
code subdirectory of the main repo. Fork the book code, try the code examples, or submit
corrections via GitHub.

All the code snippets can be replicated on most operating systems with a minimal installation of
compilers and interpreters for the corresponding languages. Where necessary, we provide basic
installation instructions and step-by-step examples of the output of those instructions.

Some of the code snippets and code output have been reformatted for print. In all such cases, the
lines have been split by a backslash (\) character, followed by a newline character. When
transcribing the examples, remove those two characters and join the lines again and you should see
identical results as shown in the example.

All the code snippets use real values and calculations where possible, so that you can build from
example to example and see the same results in any code you write to calculate the same values.
For example, the private keys and corresponding public keys and addresses are all real. The sample
transactions, blocks, and blockchain references have all been introduced in the actual bitcoin
blockchain and are part of the public ledger, so you can review them on any bitcoin system.
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Using Code Examples
This book is here to help you get your job done. In general, if example code is offered with this
book, you may use it in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require permission. Incorporating
a significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Mastering Bitcoin by Andreas M. Antonopoulos (O’Reilly).
Copyright 2015 Andreas M. Antonopoulos, 978-1-449-37404-4.”

Some editions of this book are offered under an open source license, such as CC-BY-NC
(creativecommons.org), in which case the terms of that license apply.

If you feel your use of code examples falls outside fair use or the permission given above, feel free
to contact us at permissions@oreilly.com.

Safari® Books Online

NOTE
Safari Books Online is an on-demand digital library that delivers expert content in
both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solving,
learning, and certification training.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at http://bit.ly/mastering_bitcoin.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Quick Glossary
This quick glossary contains many of the terms used in relation to bitcoin. These terms are used
throughout the book, so bookmark this for a quick reference.

address

A bitcoin address looks like 1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV. It consists of a string of
letters and numbers starting with a "1" (number one). Just like you ask others to send an email to
your email address, you would ask others to send you bitcoin to your bitcoin address.

bip

Bitcoin Improvement Proposals. A set of proposals that members of the bitcoin community have
submitted to improve bitcoin. For example, BIP0021 is a proposal to improve the bitcoin uniform
resource identifier (URI) scheme.

bitcoin

The name of the currency unit (the coin), the network, and the software.

block

A grouping of transactions, marked with a timestamp, and a fingerprint of the previous block.
The block header is hashed to produce a proof of work, thereby validating the transactions. Valid
blocks are added to the main blockchain by network consensus.

blockchain

A list of validated blocks, each linking to its predecessor all the way to the genesis block.

confirmations

Once a transaction is included in a block, it has one confirmation. As soon as another block is
mined on the same blockchain, the transaction has two confirmations, and so on. Six or more
confirmations is considered sufficient proof that a transaction cannot be reversed.

difficulty

A network-wide setting that controls how much computation is required to produce a proof of
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work.

difficulty target

A difficulty at which all the computation in the network will find blocks approximately every 10
minutes.

difficulty retargeting

A network-wide recalculation of the difficulty that occurs once every 2,106 blocks and considers
the hashing power of the previous 2,106 blocks.

fees

The sender of a transaction often includes a fee to the network for processing the requested
transaction. Most transactions require a minimum fee of 0.5 mBTC.

hash

A digital fingerprint of some binary input.

genesis block

The first block in the blockchain, used to initialize the cryptocurrency.

miner

A network node that finds valid proof of work for new blocks, by repeated hashing.

network

A peer-to-peer network that propagates transactions and blocks to every bitcoin node on the
network.

Proof-Of-Work

A piece of data that requires significant computation to find. In bitcoin, miners must find a
numeric solution to the SHA256 algorithm that meets a network-wide target, the difficulty target.

reward

An amount included in each new block as a reward by the network to the miner who found the
Proof-Of-Work solution. It is currently 25BTC per block.

secret key (aka private key)

The secret number that unlocks bitcoins sent to the corresponding address. A secret key looks
like 5J76sF8L5jTtzE96r66Sf8cka9y44wdpJjMwCxR3tzLh3ibVPxh.

transaction

In simple terms, a transfer of bitcoins from one address to another. More precisely, a transaction
is a signed data structure expressing a transfer of value. Transactions are transmitted over the
bitcoin network, collected by miners, and included into blocks, made permanent on the
blockchain.

wallet

Software that holds all your bitcoin addresses and secret keys. Use it to send, receive, and store
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your bitcoin.

Introduction

What Is Bitcoin?
Bitcoin is a collection of concepts and technologies that form the basis of a digital money ecosystem.
Units of currency called bitcoins are used to store and transmit value among participants in the
bitcoin network. Bitcoin users communicate with each other using the bitcoin protocol primarily
via the Internet, although other transport networks can also be used. The bitcoin protocol stack,
available as open source software, can be run on a wide range of computing devices, including
laptops and smartphones, making the technology easily accessible.

Users can transfer bitcoins over the network to do just about anything that can be done with
conventional currencies, including buy and sell goods, send money to people or organizations, or
extend credit. Bitcoins can be purchased, sold, and exchanged for other currencies at specialized
currency exchanges. Bitcoin in a sense is the perfect form of money for the Internet because it is
fast, secure, and borderless.

Unlike traditional currencies, bitcoins are entirely virtual. There are no physical coins or even
digital coins per se. The coins are implied in transactions that transfer value from sender to
recipient. Users of bitcoin own keys that allow them to prove ownership of transactions in the
bitcoin network, unlocking the value to spend it and transfer it to a new recipient. Those keys are
often stored in a digital wallet on each user’s computer. Possession of the key that unlocks a
transaction is the only prerequisite to spending bitcoins, putting the control entirely in the hands of
each user.

Bitcoin is a distributed, peer-to-peer system. As such there is no "central" server or point of control.
Bitcoins are created through a process called "mining," which involves competing to find solutions
to a mathematical problem while processing bitcoin transactions. Any participant in the bitcoin
network (i.e., anyone using a device running the full bitcoin protocol stack) may operate as a miner,
using their computer’s processing power to verify and record transactions. Every 10 minutes on
average, someone is able to validate the transactions of the past 10 minutes and is rewarded with
brand new bitcoins. Essentially, bitcoin mining decentralizes the currency-issuance and clearing
functions of a central bank and replaces the need for any central bank with this global competition.

The bitcoin protocol includes built-in algorithms that regulate the mining function across the
network. The difficulty of the processing task that miners must perform—to successfully record a
block of transactions for the bitcoin network—is adjusted dynamically so that, on average, someone
succeeds every 10 minutes regardless of how many miners (and CPUs) are working on the task at
any moment. The protocol also halves the rate at which new bitcoins are created every four years,
and limits the total number of bitcoins that will be created to a fixed total of 21 million coins. The
result is that the number of bitcoins in circulation closely follows an easily predictable curve that
reaches 21 million by the year 2140. Due to bitcoin’s diminishing rate of issuance, over the long
term, the bitcoin currency is deflationary. Furthermore, bitcoin cannot be inflated by "printing"
new money above and beyond the expected issuance rate.

Behind the scenes, bitcoin is also the name of the protocol, a network, and a distributed computing
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innovation. The bitcoin currency is really only the first application of this invention. As a
developer, I see bitcoin as akin to the Internet of money, a network for propagating value and
securing the ownership of digital assets via distributed computation. There’s a lot more to bitcoin
than first meets the eye.

In this chapter we’ll get started by explaining some of the main concepts and terms, getting the
necessary software, and using bitcoin for simple transactions. In following chapters we’ll start
unwrapping the layers of technology that make bitcoin possible and examine the inner workings of
the bitcoin network and protocol.
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Digital Currencies Before Bitcoin

The emergence of viable digital money is closely linked to developments in cryptography.
This is not surprising when one considers the fundamental challenges involved with using
bits to represent value that can be exchanged for goods and services. Two basic questions for
anyone accepting digital money are:

1. Can I trust the money is authentic and not counterfeit?

2. Can I be sure that no one else can claim that this money belongs to them and not me?
(Aka the “double-spend” problem.)

Issuers of paper money are constantly battling the counterfeiting problem by using
increasingly sophisticated papers and printing technology. Physical money addresses the
double-spend issue easily because the same paper note cannot be in two places at once. Of
course, conventional money is also often stored and transmitted digitally. In these cases, the
counterfeiting and double-spend issues are handled by clearing all electronic transactions
through central authorities that have a global view of the currency in circulation. For digital
money, which cannot take advantage of esoteric inks or holographic strips, cryptography
provides the basis for trusting the legitimacy of a user’s claim to value. Specifically,
cryptographic digital signatures enable a user to sign a digital asset or transaction proving
the ownership of that asset. With the appropriate architecture, digital signatures also can be
used to address the double-spend issue.

When cryptography started becoming more broadly available and understood in the late
1980s, many researchers began trying to use cryptography to build digital currencies. These
early digital currency projects issued digital money, usually backed by a national currency or
precious metal such as gold.

Although these earlier digital currencies worked, they were centralized and, as a result, they
were easy to attack by governments and hackers. Early digital currencies used a central
clearinghouse to settle all transactions at regular intervals, just like a traditional banking
system. Unfortunately, in most cases these nascent digital currencies were targeted by
worried governments and eventually litigated out of existence. Some failed in spectacular
crashes when the parent company liquidated abruptly. To be robust against intervention by
antagonists, whether legitimate governments or criminal elements, a decentralized digital
currency was needed to avoid a single point of attack. Bitcoin is such a system, completely
decentralized by design, and free of any central authority or point of control that can be
attacked or corrupted.

Bitcoin represents the culmination of decades of research in cryptography and distributed
systems and includes four key innovations brought together in a unique and powerful
combination. Bitcoin consists of:

• A decentralized peer-to-peer network (the bitcoin protocol)

• A public transaction ledger (the blockchain)

• A decentralized mathematical and deterministic currency issuance (distributed mining)

• A decentralized transaction verification system (transaction script)
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History of Bitcoin
Bitcoin was invented in 2008 with the publication of a paper titled "Bitcoin: A Peer-to-Peer
Electronic Cash System," written under the alias of Satoshi Nakamoto. Nakamoto combined several
prior inventions such as b-money and HashCash to create a completely decentralized electronic
cash system that does not rely on a central authority for currency issuance or settlement and
validation of transactions. The key innovation was to use a distributed computation system (called
a "proof-of-work" algorithm) to conduct a global "election" every 10 minutes, allowing the
decentralized network to arrive at consensus about the state of transactions. This elegantly solves
the issue of double-spend where a single currency unit can be spent twice. Previously, the double-
spend problem was a weakness of digital currency and was addressed by clearing all transactions
through a central clearinghouse.

The bitcoin network started in 2009, based on a reference implementation published by Nakamoto
and since revised by many other programmers. The distributed computation that provides security
and resilience for bitcoin has increased exponentially, and now exceeds that combined processing
capacity of the world’s top super-computers. Bitcoin’s total market value is estimated at between 5
billion and 10 billion US dollars, depending on the bitcoin-to-dollar exchange rate. The largest
transaction processed so far by the network was 150 million US dollars, transmitted instantly and
processed without any fees.

Satoshi Nakamoto withdrew from the public in April of 2011, leaving the responsibility of
developing the code and network to a thriving group of volunteers. The identity of the person or
people behind bitcoin is still unknown. However, neither Satoshi Nakamoto nor anyone else exerts
control over the bitcoin system, which operates based on fully transparent mathematical principles.
The invention itself is groundbreaking and has already spawned new science in the fields of
distributed computing, economics, and econometrics.

A Solution to a Distributed Computing Problem

Satoshi Nakamoto’s invention is also a practical and novel solution to a problem in
distributed computing, known as the "Byzantine Generals' Problem." Briefly, the problem
consists of trying to agree on a course of action by exchanging information over an unreliable
and potentially compromised network. Satoshi Nakamoto’s solution, which uses the concept
of proof-of-work to achieve consensus without a central trusted authority, represents a
breakthrough in distributed computing science and has wide applicability beyond currency.
It can be used to achieve consensus on decentralized networks to prove the fairness of
elections, lotteries, asset registries, digital notarization, and more.

Bitcoin Uses, Users, and Their Stories
Bitcoin is a technology, but it expresses money that is fundamentally a language for exchanging
value between people. Let’s look at the people who are using bitcoin and some of the most common
uses of the currency and protocol through their stories. We will reuse these stories throughout the
book to illustrate the real-life uses of digital money and how they are made possible by the various
technologies that are part of bitcoin.
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North American low-value retail

Alice lives in Northern California’s Bay Area. She has heard about bitcoin from her techie
friends and wants to start using it. We will follow her story as she learns about bitcoin, acquires
some, and then spends some of her bitcoin to buy a cup of coffee at Bob’s Cafe in Palo Alto. This
story will introduce us to the software, the exchanges, and basic transactions from the
perspective of a retail consumer.

North American high-value retail

Carol is an art gallery owner in San Francisco. She sells expensive paintings for bitcoin. This
story will introduce the risks of a "51%" consensus attack for retailers of high-value items.

Offshore contract services

Bob, the cafe owner in Palo Alto, is building a new website. He has contracted with an Indian
web developer, Gopesh, who lives in Bangalore, India. Gopesh has agreed to be paid in bitcoin.
This story will examine the use of bitcoin for outsourcing, contract services, and international
wire transfers.

Charitable donations

Eugenia is the director of a children’s charity in the Philippines. Recently she has discovered
bitcoin and wants to use it to reach a whole new group of foreign and domestic donors to
fundraise for her charity. She’s also investigating ways to use bitcoin to distribute funds quickly
to areas of need. This story will show the use of bitcoin for global fundraising across currencies
and borders and the use of an open ledger for transparency in charitable organizations.

Import/export

Mohammed is an electronics importer in Dubai. He’s trying to use bitcoin to buy electronics
from the US and China for import into the UAE to accelerate the process of payments for
imports. This story will show how bitcoin can be used for large business-to-business
international payments tied to physical goods.

Mining for bitcoin

Jing is a computer engineering student in Shanghai. He has built a "mining" rig to mine for
bitcoins, using his engineering skills to supplement his income. This story will examine the
"industrial" base of bitcoin: the specialized equipment used to secure the bitcoin network and
issue new currency.

Each of these stories is based on real people and real industries that are currently using bitcoin to
create new markets, new industries, and innovative solutions to global economic issues.

Getting Started
To join the bitcoin network and start using the currency, all a user has to do is download an
application or use a web application. Because bitcoin is a standard, there are many
implementations of the bitcoin client software. There is also a reference implementation, also
known as the Satoshi client, which is managed as an open source project by a team of developers
and is derived from the original implementation written by Satoshi Nakamoto.

The three main forms of bitcoin clients are:
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Full client

A full client, or "full node," is a client that stores the entire history of bitcoin transactions (every
transaction by every user, ever), manages the users' wallets, and can initiate transactions
directly on the bitcoin network. This is similar to a standalone email server, in that it handles all
aspects of the protocol without relying on any other servers or third-party services.

Lightweight client

A lightweight client stores the user’s wallet but relies on third-party–owned servers for access to
the bitcoin transactions and network. The light client does not store a full copy of all transactions
and therefore must trust the third-party servers for transaction validation. This is similar to a
standalone email client that connects to a mail server for access to a mailbox, in that it relies on
a third party for interactions with the network.

Web client

Web clients are accessed through a web browser and store the user’s wallet on a server owned
by a third party. This is similar to webmail in that it relies entirely on a third-party server.

Mobile Bitcoin

Mobile clients for smartphones, such as those based on the Android system, can either
operate as full clients, lightweight clients, or web clients. Some mobile clients are
synchronized with a web or desktop client, providing a multiplatform wallet across multiple
devices but with a common source of funds.

The choice of bitcoin client depends on how much control the user wants over funds. A full client
will offer the highest level of control and independence for the user, but in turn puts the burden of
backups and security on the user. On the other end of the range of choices, a web client is the
easiest to set up and use, but the trade-off with a web client is that counterparty risk is introduced
because security and control is shared with the user and the owner of the web service. If a web-
wallet service is compromised, as many have been, the users can lose all their funds. Conversely, if
users have a full client without adequate backups, they might lose their funds through a computer
mishap.

For the purposes of this book, we will be demonstrating the use of a variety of downloadable
bitcoin clients, from the reference implementation (the Satoshi client) to web wallets. Some of the
examples will require the use of the reference client, which, in addition to being a full client, also
exposes APIs to the wallet, network, and transaction services. If you are planning to explore the
programmatic interfaces into the bitcoin system, you will need the reference client.

Quick Start

Alice, who we introduced in Bitcoin Uses, Users, and Their Stories, is not a technical user and only
recently heard about bitcoin from a friend. She starts her journey by visiting the official website
bitcoin.org, where she finds a broad selection of bitcoin clients. Following the advice on the
bitcoin.org site, she chooses the lightweight bitcoin client Multibit.

Alice follows a link from the bitcoin.org site to download and install Multibit on her desktop.
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Multibit is available for Windows, Mac OS, and Linux desktops.

WARNING

A bitcoin wallet must be protected by a password or passphrase. There are
many bad actors attempting to break weak passwords, so take care to select
one that cannot be easily broken. Use a combination of upper and lowercase
characters, numbers, and symbols. Avoid personal information such as birth
dates or names of sports teams. Avoid any words commonly found in
dictionaries, in any language. If you can, use a password generator to create a
completely random password that is at least 12 characters in length.
Remember: bitcoin is money and can be instantly moved anywhere in the
world. If it is not well protected, it can be easily stolen.

Once Alice has downloaded and installed the Multibit application, she runs it and is greeted by a
Welcome screen, as shown in The Multibit bitcoin client Welcome screen.

Figure 1. The Multibit bitcoin client Welcome screen

Multibit automatically creates a wallet and a new bitcoin address for Alice, which Alice can see by
clicking the Request tab shown in Alice’s new bitcoin address, in the Request tab of the Multibit
client.
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Figure 2. Alice’s new bitcoin address, in the Request tab of the Multibit client

The most important part of this screen is Alice’s bitcoin address. Like an email address, Alice can
share this address and anyone can use it to send money directly to her new wallet. On the screen it
appears as a long string of letters and numbers: 1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK. Next to
the wallet’s bitcoin address is a QR code, a form of barcode that contains the same information in a
format that can be scanned by a smartphone camera. The QR code is the black-and-white square on
the right side of the window. Alice can copy the bitcoin address or the QR code onto her clipboard
by clicking the copy button adjacent to each of them. Clicking the QR code itself will magnify it, so
that it can be easily scanned by a smartphone camera.

Alice can also print the QR code as a way to easily give her address to others without them having
to type the long string of letters and numbers.

TIP

Bitcoin addresses start with the digit 1 or 3. Like email addresses, they can be shared
with other bitcoin users who can use them to send bitcoin directly to your wallet.
Unlike email addresses, you can create new addresses as often as you like, all of which
will direct funds to your wallet. A wallet is simply a collection of addresses and the
keys that unlock the funds within. You can increase your privacy by using a different
address for every transaction. There is practically no limit to the number of addresses
a user can create.

Alice is now ready to start using her new bitcoin wallet.

Getting Your First Bitcoins

It is not possible to buy bitcoins at a bank or foreign exchange kiosks at this time. As of 2014, it is
still quite difficult to acquire bitcoins in most countries. There are a number of specialized currency
exchanges where you can buy and sell bitcoin in exchange for a local currency. These operate as
web-based currency markets and include:

Bitstamp

A European currency market that supports several currencies including euros (EUR) and US
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dollars (USD) via wire transfer.

Coinbase

A US-based bitcoin wallet and platform where merchants and consumers can transact in bitcoin.
Coinbase makes it easy to buy and sell bitcoin, allowing users to connect to US checking accounts
via the ACH system.

Cryptocurrency exchanges such as these operate at the intersection of national currencies and
cryptocurrencies. As such, they are subject to national and international regulations, and are often
specific to a single country or economic area and specialize in the national currencies of that area.
Your choice of currency exchange will be specific to the national currency you use and limited to
the exchanges that operate within the legal jurisdiction of your country. Similar to opening a bank
account, it takes several days or weeks to set up the necessary accounts with these services because
they require various forms of identification to comply with KYC (know your customer) and AML
(anti-money laundering) banking regulations. Once you have an account on a bitcoin exchange, you
can then buy or sell bitcoins quickly just as you could with foreign currency with a brokerage
account.

You can find a more complete list at bitcoin charts, a site that offers price quotes and other market
data across many dozens of currency exchanges.

There are four other methods for getting bitcoins as a new user:

• Find a friend who has bitcoins and buy some from him directly. Many bitcoin users start this
way.

• Use a classified service such as localbitcoins.com to find a seller in your area to buy bitcoins for
cash in an in-person transaction.

• Sell a product or service for bitcoin. If you’re a programmer, sell your programming skills.

• Use a bitcoin ATM in your city. Find a bitcoin ATM close to you using an online map from
CoinDesk.

Alice was introduced to bitcoin by a friend and so she has an easy way of getting her first bitcoins
while she waits for her account on a California currency market to be verified and activated.

Sending and Receiving Bitcoins

Alice has created her bitcoin wallet and she is now ready to receive funds. Her wallet application
randomly generated a private key (described in more detail in Private Keys) together with its
corresponding bitcoin address. At this point, her bitcoin address is not known to the bitcoin
network or "registered" with any part of the bitcoin system. Her bitcoin address is simply a number
that corresponds to a key that she can use to control access to the funds. There is no account or
association between that address and an account. Until the moment this address is referenced as
the recipient of value in a transaction posted on the bitcoin ledger (the blockchain), it is simply part
of the vast number of possible addresses that are "valid" in bitcoin. Once it has been associated with
a transaction, it becomes part of the known addresses in the network and Alice can check its
balance on the public ledger.

Alice meets her friend Joe, who introduced her to bitcoin, at a local restaurant so they can exchange
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some US dollars and put some bitcoins into her account. She has brought a printout of her address
and the QR code as displayed in her bitcoin wallet. There is nothing sensitive, from a security
perspective, about the bitcoin address. It can be posted anywhere without risking the security of
her account.

Alice wants to convert just 10 US dollars into bitcoin, so as not to risk too much money on this new
technology. She gives Joe a $10 bill and the printout of her address so that Joe can send her the
equivalent amount of bitcoin.

Next, Joe has to figure out the exchange rate so that he can give the correct amount of bitcoin to
Alice. There are hundreds of applications and websites that can provide the current market rate.
Here are some of the most popular:

Bitcoin Charts

A market data listing service that shows the market rate of bitcoin across many exchanges
around the globe, denominated in different local currencies

Bitcoin Average

A site that provides a simple view of the volume-weighted-average for each currency

ZeroBlock

A free Android and iOS application that can display a bitcoin price from different exchanges (see
ZeroBlock, a bitcoin market-rate application for Android and iOS)

Bitcoin Wisdom

Another market data listing service

Figure 3. ZeroBlock, a bitcoin market-rate application for Android and iOS

Using one of the applications or websites just listed, Joe determines the price of bitcoin to be
approximately 100 US dollars per bitcoin. At that rate he should give Alice 0.10 bitcoin, also known
as 100 millibits, in return for the 10 US dollars she gave him.

Once Joe has established a fair exchange price, he opens his mobile wallet application and selects to
"send" bitcoin. For example, if using the Blockchain mobile wallet on an Android phone, he would
see a screen requesting two inputs, as shown in Blockchain mobile wallet’s bitcoin send screen.

• The destination bitcoin address for the transaction

• The amount of bitcoin to send

In the input field for the bitcoin address, there is a small icon that looks like a QR code. This allows
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Joe to scan the barcode with his smartphone camera so that he doesn’t have to type in Alice’s
bitcoin address (1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK), which is quite long and difficult to
type. Joe taps the QR code icon and activates the smartphone camera, scanning the QR code from
Alice’s printed wallet that she brought with her. The mobile wallet application fills in the bitcoin
address and Joe can check that it scanned correctly by comparing a few digits from the address
with the address printed by Alice.

Figure 4. Blockchain mobile wallet’s bitcoin send screen

Joe then enters the bitcoin value for the transaction, 0.10 bitcoin. He carefully checks to make sure
he has entered the correct amount, because he is about to transmit money and any mistake could
be costly. Finally, he presses Send to transmit the transaction. Joe’s mobile bitcoin wallet constructs
a transaction that assigns 0.10 bitcoin to the address provided by Alice, sourcing the funds from
Joe’s wallet and signing the transaction with Joe’s private keys. This tells the bitcoin network that
Joe has authorized a transfer of value from one of his addresses to Alice’s new address. As the
transaction is transmitted via the peer-to-peer protocol, it quickly propagates across the bitcoin
network. In less than a second, most of the well-connected nodes in the network receive the
transaction and see Alice’s address for the first time.

If Alice has a smartphone or laptop with her, she will also be able to see the transaction. The bitcoin
ledger—a constantly growing file that records every bitcoin transaction that has ever occurred—is
public, meaning that all she has to do is look up her own address and see if any funds have been
sent to it. She can do this quite easily at the blockchain.info website by entering her address in the
search box. The website will show her a page listing all the transactions to and from that address. If
Alice is watching that page, it will update to show a new transaction transferring 0.10 bitcoin to her
balance soon after Joe hits Send.
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Confirmations

At first, Alice’s address will show the transaction from Joe as "Unconfirmed." This means that
the transaction has been propagated to the network but has not yet been included in the
bitcoin transaction ledger, known as the blockchain. To be included, the transaction must be
"picked up" by a miner and included in a block of transactions. Once a new block is created,
in approximately 10 minutes, the transactions within the block will be accepted as
"confirmed" by the network and can be spent. The transaction is seen by all instantly, but it is
only "trusted" by all when it is included in a newly mined block.

Alice is now the proud owner of 0.10 bitcoin that she can spend. In the next chapter we will look at
her first purchase with bitcoin, and examine the underlying transaction and propagation
technologies in more detail.

How Bitcoin Works

Transactions, Blocks, Mining, and the Blockchain
The bitcoin system, unlike traditional banking and payment systems, is based on de-centralized
trust. Instead of a central trusted authority, in bitcoin, trust is achieved as an emergent property
from the interactions of different participants in the bitcoin system. In this chapter, we will
examine bitcoin from a high level by tracking a single transaction through the bitcoin system and
watch as it becomes "trusted" and accepted by the bitcoin mechanism of distributed consensus and
is finally recorded on the blockchain, the distributed ledger of all transactions.

Each example is based on an actual transaction made on the bitcoin network, simulating the
interactions between the users (Joe, Alice, and Bob) by sending funds from one wallet to another.
While tracking a transaction through the bitcoin network and blockchain, we will use a blockchain
explorer site to visualize each step. A blockchain explorer is a web application that operates as a
bitcoin search engine, in that it allows you to search for addresses, transactions, and blocks and see
the relationships and flows between them.

Popular blockchain explorers include:

• Blockchain info

• Bitcoin Block Explorer

• insight

• blockr Block Reader

Each of these has a search function that can take an address, transaction hash, or block number
and find the equivalent data on the bitcoin network and blockchain. With each example, we will
provide a URL that takes you directly to the relevant entry, so you can study it in detail.
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Bitcoin Overview

In the overview diagram shown in Bitcoin overview, we see that the bitcoin system consists of users
with wallets containing keys, transactions that are propagated across the network, and miners who
produce (through competitive computation) the consensus blockchain, which is the authoritative
ledger of all transactions. In this chapter, we will trace a single transaction as it travels across the
network and examine the interactions between each part of the bitcoin system, at a high level.
Subsequent chapters will delve into the technology behind wallets, mining, and merchant systems.

Figure 5. Bitcoin overview

Buying a Cup of Coffee

Alice, introduced in the previous chapter, is a new user who has just acquired her first bitcoin. In
Getting Your First Bitcoins, Alice met with her friend Joe to exchange some cash for bitcoin. The
transaction created by Joe funded Alice’s wallet with 0.10 BTC. Now Alice will make her first retail
transaction, buying a cup of coffee at Bob’s coffee shop in Palo Alto, California. Bob’s coffee shop
recently started accepting bitcoin payments, by adding a bitcoin option to his point-of-sale system.
The prices at Bob’s Cafe are listed in the local currency (US dollars), but at the register, customers
have the option of paying in either dollars or bitcoin. Alice places her order for a cup of coffee and
Bob enters the transaction at the register. The point-of-sale system will convert the total price from
US dollars to bitcoins at the prevailing market rate and display the prices in both currencies, as well
as show a QR code containing a payment request for this transaction (see Payment request QR code
(Hint: Try to scan this!)):

Total:
$1.50 USD
0.015 BTC
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Figure 6. Payment request QR code (Hint: Try to scan this!)

The payment request QR code encodes the following URL, defined in BIP0021:

bitcoin:1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA?
amount=0.015&
label=Bob%27s%20Cafe&
message=Purchase%20at%20Bob%27s%20Cafe

Components of the URL

A bitcoin address: "1GdK9UzpHBzqzX2A9JFP3Di4weBwqgmoQA"
The payment amount: "0.015"
A label for the recipient address: "Bob's Cafe"
A description for the payment: "Purchase at Bob's Cafe"

TIP

Unlike a QR code that simply contains a destination bitcoin address, a payment
request is a QR-encoded URL that contains a destination address, a payment amount,
and a generic description such as "Bob’s Cafe." This allows a bitcoin wallet application
to prefill the information used to send the payment while showing a human-readable
description to the user. You can scan the QR code with a bitcoin wallet application to
see what Alice would see.

Bob says, "That’s one-dollar-fifty, or fifteen millibits."

Alice uses her smartphone to scan the barcode on display. Her smartphone shows a payment of
0.0150 BTC to Bob's Cafe and she selects Send to authorize the payment. Within a few seconds
(about the same amount of time as a credit card authorization), Bob would see the transaction on
the register, completing the transaction.

In the following sections we will examine this transaction in more detail, see how Alice’s wallet
constructed it, how it was propagated across the network, how it was verified, and finally, how Bob
can spend that amount in subsequent transactions.
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NOTE

The bitcoin network can transact in fractional values, e.g., from milli-bitcoins
(1/1000th of a bitcoin) down to 1/100,000,000th of a bitcoin, which is known as a
satoshi. Throughout this book we’ll use the term “bitcoin” to refer to any quantity of
bitcoin currency, from the smallest unit (1 satoshi) to the total number (21,000,000)
of all bitcoins that will ever be mined.

Bitcoin Transactions
In simple terms, a transaction tells the network that the owner of a number of bitcoins has
authorized the transfer of some of those bitcoins to another owner. The new owner can now spend
these bitcoins by creating another transaction that authorizes transfer to another owner, and so on,
in a chain of ownership.

Transactions are like lines in a double-entry bookkeeping ledger. In simple terms, each transaction
contains one or more "inputs," which are debits against a bitcoin account. On the other side of the
transaction, there are one or more "outputs," which are credits added to a bitcoin account. The
inputs and outputs (debits and credits) do not necessarily add up to the same amount. Instead,
outputs add up to slightly less than inputs and the difference represents an implied "transaction
fee," which is a small payment collected by the miner who includes the transaction in the ledger. A
bitcoin transaction is shown as a bookkeeping ledger entry in Transaction as double-entry
bookkeeping.

The transaction also contains proof of ownership for each amount of bitcoin (inputs) whose value is
transferred, in the form of a digital signature from the owner, which can be independently
validated by anyone. In bitcoin terms, "spending" is signing a transaction that transfers value from
a previous transaction over to a new owner identified by a bitcoin address.

TIP

Transactions move value from transaction inputs to transaction outputs. An input is
where the coin value is coming from, usually a previous transaction’s output. A
transaction output assigns a new owner to the value by associating it with a key. The
destination key is called an encumbrance. It imposes a requirement for a signature for
the funds to be redeemed in future transactions. Outputs from one transaction can be
used as inputs in a new transaction, thus creating a chain of ownership as the value is
moved from address to address (see A chain of transactions, where the output of one
transaction is the input of the next transaction).

23



Figure 7. Transaction as double-entry bookkeeping

Figure 8. A chain of transactions, where the output of one transaction is the input of the next transaction

Alice’s payment to Bob’s Cafe uses a previous transaction as its input. In the previous chapter Alice
received bitcoin from her friend Joe in return for cash. That transaction has a number of bitcoins
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locked (encumbered) against Alice’s key. Her new transaction to Bob’s Cafe references the previous
transaction as an input and creates new outputs to pay for the cup of coffee and receive change.
The transactions form a chain, where the inputs from the latest transaction correspond to outputs
from previous transactions. Alice’s key provides the signature that unlocks those previous
transaction outputs, thereby proving to the bitcoin network that she owns the funds. She attaches
the payment for coffee to Bob’s address, thereby "encumbering" that output with the requirement
that Bob produces a signature in order to spend that amount. This represents a transfer of value
between Alice and Bob. This chain of transactions, from Joe to Alice to Bob, is illustrated in A chain
of transactions, where the output of one transaction is the input of the next transaction.

Common Transaction Forms

The most common form of transaction is a simple payment from one address to another, which
often includes some "change" returned to the original owner. This type of transaction has one input
and two outputs and is shown in Most common transaction.

Figure 9. Most common transaction

Another common form of transaction is one that aggregates several inputs into a single output (see
Transaction aggregating funds). This represents the real-world equivalent of exchanging a pile of
coins and currency notes for a single larger note. Transactions like these are sometimes generated
by wallet applications to clean up lots of smaller amounts that were received as change for
payments.
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Figure 10. Transaction aggregating funds

Finally, another transaction form that is seen often on the bitcoin ledger is a transaction that
distributes one input to multiple outputs representing multiple recipients (see Transaction
distributing funds). This type of transaction is sometimes used by commercial entities to distribute
funds, such as when processing payroll payments to multiple employees.

Figure 11. Transaction distributing funds

Constructing a Transaction
Alice’s wallet application contains all the logic for selecting appropriate inputs and outputs to build
a transaction to Alice’s specification. Alice only needs to specify a destination and an amount and
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the rest happens in the wallet application without her seeing the details. Importantly, a wallet
application can construct transactions even if it is completely offline. Like writing a check at home
and later sending it to the bank in an envelope, the transaction does not need to be constructed and
signed while connected to the bitcoin network. It only has to be sent to the network eventually for it
to be executed.

Getting the Right Inputs

Alice’s wallet application will first have to find inputs that can pay for the amount she wants to
send to Bob. Most wallet applications keep a small database of "unspent transaction outputs" that
are locked (encumbered) with the wallet’s own keys. Therefore, Alice’s wallet would contain a copy
of the transaction output from Joe’s transaction, which was created in exchange for cash (see
Getting Your First Bitcoins). A bitcoin wallet application that runs as a full-index client actually
contains a copy of every unspent output from every transaction in the blockchain. This allows a
wallet to construct transaction inputs as well as quickly verify incoming transactions as having
correct inputs. However, because a full-index client takes up a lot of disk space, most user wallets
run "lightweight" clients that track only the user’s own unspent outputs.

If the wallet application does not maintain a copy of unspent transaction outputs, it can query the
bitcoin network to retrieve this information, using a variety of APIs available by different providers
or by asking a full-index node using the bitcoin JSON RPC API. Look up all the unspent outputs for
Alice’s bitcoin address shows a RESTful API request, constructed as an HTTP GET command to a
specific URL. This URL will return all the unspent transaction outputs for an address, giving any
application the information it needs to construct transaction inputs for spending. We use the simple
command-line HTTP client cURL to retrieve the response.

Example 1. Look up all the unspent outputs for Alice’s bitcoin address

$ curl https://blockchain.info/unspent?active=1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK

27



Example 2. Response to the lookup

{

    "unspent_outputs":[

        {
            "tx_hash":"186f9f998a5...2836dd734d2804fe65fa35779",
            "tx_index":104810202,
            "tx_output_n": 0,
            "script":"76a9147f9b1a7fb68d60c536c2fd8aeaa53a8f3cc025a888ac",
            "value": 10000000,
            "value_hex": "00989680",
            "confirmations":0
        }

    ]
}

The response in Response to the lookup shows one unspent output (one that has not been redeemed
yet) under the ownership of Alice’s address 1Cdid9KFAaatwczBwBttQcwXYCpvK8h7FK. The
response includes the reference to the transaction in which this unspent output is contained (the
payment from Joe) and its value in satoshis, at 10 million, equivalent to 0.10 bitcoin. With this
information, Alice’s wallet application can construct a transaction to transfer that value to new
owner addresses.

TIP View the transaction from Joe to Alice.

As you can see, Alice’s wallet contains enough bitcoins in a single unspent output to pay for the cup
of coffee. Had this not been the case, Alice’s wallet application might have to "rummage" through a
pile of smaller unspent outputs, like picking coins from a purse until it could find enough to pay for
coffee. In both cases, there might be a need to get some change back, which we will see in the next
section, as the wallet application creates the transaction outputs (payments).

Creating the Outputs

A transaction output is created in the form of a script that creates an encumbrance on the value
and can only be redeemed by the introduction of a solution to the script. In simpler terms, Alice’s
transaction output will contain a script that says something like, "This output is payable to whoever
can present a signature from the key corresponding to Bob’s public address." Because only Bob has
the wallet with the keys corresponding to that address, only Bob’s wallet can present such a
signature to redeem this output. Alice will therefore "encumber" the output value with a demand
for a signature from Bob.

This transaction will also include a second output, because Alice’s funds are in the form of a 0.10
BTC output, too much money for the 0.015 BTC cup of coffee. Alice will need 0.085 BTC in change.
Alice’s change payment is created by Alice’s wallet in the very same transaction as the payment to
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Bob. Essentially, Alice’s wallet breaks her funds into two payments: one to Bob, and one back to
herself. She can then use the change output in a subsequent transaction, thus spending it later.

Finally, for the transaction to be processed by the network in a timely fashion, Alice’s wallet
application will add a small fee. This is not explicit in the transaction; it is implied by the difference
between inputs and outputs. If instead of taking 0.085 in change, Alice creates only 0.0845 as the
second output, there will be 0.0005 BTC (half a millibitcoin) left over. The input’s 0.10 BTC is not
fully spent with the two outputs, because they will add up to less than 0.10. The resulting difference
is the transaction fee that is collected by the miner as a fee for including the transaction in a block
and putting it on the blockchain ledger.

The resulting transaction can be seen using a blockchain explorer web application, as shown in
Alice’s transaction to Bob’s Cafe.

Figure 12. Alice’s transaction to Bob’s Cafe

TIP View the transaction from Alice to Bob’s Cafe.

Adding the Transaction to the Ledger

The transaction created by Alice’s wallet application is 258 bytes long and contains everything
necessary to confirm ownership of the funds and assign new owners. Now, the transaction must be
transmitted to the bitcoin network where it will become part of the distributed ledger (the
blockchain). In the next section we will see how a transaction becomes part of a new block and how
the block is "mined." Finally, we will see how the new block, once added to the blockchain, is
increasingly trusted by the network as more blocks are added.

Transmitting the transaction

Because the transaction contains all the information necessary to process, it does not matter how or
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where it is transmitted to the bitcoin network. The bitcoin network is a peer-to-peer network, with
each bitcoin client participating by connecting to several other bitcoin clients. The purpose of the
bitcoin network is to propagate transactions and blocks to all participants.

How it propagates

Alice’s wallet application can send the new transaction to any of the other bitcoin clients it is
connected to over any Internet connection: wired, WiFi, or mobile. Her bitcoin wallet does not have
to be connected to Bob’s bitcoin wallet directly and she does not have to use the Internet connection
offered by the cafe, though both those options are possible, too. Any bitcoin network node (other
client) that receives a valid transaction it has not seen before will immediately forward it to other
nodes to which it is connected. Thus, the transaction rapidly propagates out across the peer-to-peer
network, reaching a large percentage of the nodes within a few seconds.

Bob’s view

If Bob’s bitcoin wallet application is directly connected to Alice’s wallet application, Bob’s wallet
application might be the first node to receive the transaction. However, even if Alice’s wallet sends
the transaction through other nodes, it will reach Bob’s wallet within a few seconds. Bob’s wallet
will immediately identify Alice’s transaction as an incoming payment because it contains outputs
redeemable by Bob’s keys. Bob’s wallet application can also independently verify that the
transaction is well formed, uses previously unspent inputs, and contains sufficient transaction fees
to be included in the next block. At this point Bob can assume, with little risk, that the transaction
will shortly be included in a block and confirmed.

TIP

A common misconception about bitcoin transactions is that they must be "confirmed"
by waiting 10 minutes for a new block, or up to 60 minutes for a full six confirmations.
Although confirmations ensure the transaction has been accepted by the whole
network, such a delay is unnecessary for small-value items such as a cup of coffee. A
merchant may accept a valid small-value transaction with no confirmations, with no
more risk than a credit card payment made without an ID or a signature, as
merchants routinely accept today.

Bitcoin Mining
The transaction is now propagated on the bitcoin network. It does not become part of the shared
ledger (the blockchain) until it is verified and included in a block by a process called mining. See
Mining and Consensus for a detailed explanation.

The bitcoin system of trust is based on computation. Transactions are bundled into blocks, which
require an enormous amount of computation to prove, but only a small amount of computation to
verify as proven. The mining process serves two purposes in bitcoin:

• Mining creates new bitcoins in each block, almost like a central bank printing new money. The
amount of bitcoin created per block is fixed and diminishes with time.

• Mining creates trust by ensuring that transactions are only confirmed if enough computational
power was devoted to the block that contains them. More blocks mean more computation,
which means more trust.
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A good way to describe mining is like a giant competitive game of sudoku that resets every time
someone finds a solution and whose difficulty automatically adjusts so that it takes approximately
10 minutes to find a solution. Imagine a giant sudoku puzzle, several thousand rows and columns
in size. If I show you a completed puzzle you can verify it quite quickly. However, if the puzzle has a
few squares filled and the rest are empty, it takes a lot of work to solve! The difficulty of the sudoku
can be adjusted by changing its size (more or fewer rows and columns), but it can still be verified
quite easily even if it is very large. The "puzzle" used in bitcoin is based on a cryptographic hash
and exhibits similar characteristics: it is asymmetrically hard to solve but easy to verify, and its
difficulty can be adjusted.

In Bitcoin Uses, Users, and Their Stories, we introduced Jing, a computer engineering student in
Shanghai. Jing is participating in the bitcoin network as a miner. Every 10 minutes or so, Jing joins
thousands of other miners in a global race to find a solution to a block of transactions. Finding such
a solution, the so-called proof of work, requires quadrillions of hashing operations per second
across the entire bitcoin network. The algorithm for proof of work involves repeatedly hashing the
header of the block and a random number with the SHA256 cryptographic algorithm until a
solution matching a predetermined pattern emerges. The first miner to find such a solution wins
the round of competition and publishes that block into the blockchain.

Jing started mining in 2010 using a very fast desktop computer to find a suitable proof of work for
new blocks. As more miners started joining the bitcoin network, the difficulty of the problem
increased rapidly. Soon, Jing and other miners upgraded to more specialized hardware, such as
high-end dedicated graphical processing units (GPUs) cards such as those used in gaming desktops
or consoles. At the time of this writing, the difficulty is so high that it is profitable only to mine with
application-specific integrated circuits (ASIC), essentially hundreds of mining algorithms printed in
hardware, running in parallel on a single silicon chip. Jing also joined a "mining pool," which much
like a lottery pool allows several participants to share their efforts and the rewards. Jing now runs
two USB-connected ASIC machines to mine for bitcoin 24 hours a day. He pays his electricity costs
by selling the bitcoin he is able to generate from mining, creating some income from the profits. His
computer runs a copy of bitcoind, the reference bitcoin client, as a backend to his specialized
mining software.

Mining Transactions in Blocks
A transaction transmitted across the network is not verified until it becomes part of the global
distributed ledger, the blockchain. Every 10 minutes on average, miners generate a new block that
contains all the transactions since the last block. New transactions are constantly flowing into the
network from user wallets and other applications. As these are seen by the bitcoin network nodes,
they get added to a temporary pool of unverified transactions maintained by each node. As miners
build a new block, they add unverified transactions from this pool to a new block and then attempt
to solve a very hard problem (a.k.a., proof of work) to prove the validity of that new block. The
process of mining is explained in detail in Introduction.

Transactions are added to the new block, prioritized by the highest-fee transactions first and a few
other criteria. Each miner starts the process of mining a new block of transactions as soon as he
receives the previous block from the network, knowing he has lost that previous round of
competition. He immediately creates a new block, fills it with transactions and the fingerprint of
the previous block, and starts calculating the proof of work for the new block. Each miner includes
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a special transaction in his block, one that pays his own bitcoin address a reward of newly created
bitcoins (currently 25 BTC per block). If he finds a solution that makes that block valid, he "wins"
this reward because his successful block is added to the global blockchain and the reward
transaction he included becomes spendable. Jing, who participates in a mining pool, has set up his
software to create new blocks that assign the reward to a pool address. From there, a share of the
reward is distributed to Jing and other miners in proportion to the amount of work they
contributed in the last round.

Alice’s transaction was picked up by the network and included in the pool of unverified
transactions. Because it had sufficient fees, it was included in a new block generated by Jing’s
mining pool. Approximately five minutes after the transaction was first transmitted by Alice’s
wallet, Jing’s ASIC miner found a solution for the block and published it as block #277316,
containing 419 other transactions. Jing’s ASIC miner published the new block on the bitcoin
network, where other miners validated it and started the race to generate the next block.

You can see the block that includes Alice’s transaction.

A few minutes later, a new block, #277317, is mined by another miner. Because this new block is
based on the previous block (#277316) that contained Alice’s transaction, it added even more
computation on top of that block, thereby strengthening the trust in those transactions. The block
containing Alice’s transaction is counted as one "confirmation" of that transaction. Each block
mined on top of the one containing the transaction is an additional confirmation. As the blocks pile
on top of each other, it becomes exponentially harder to reverse the transaction, thereby making it
more and more trusted by the network.

In the diagram in Alice’s transaction included in block #277316 we can see block #277316, which
contains Alice’s transaction. Below it are 277,316 blocks (including block #0), linked to each other in
a chain of blocks (blockchain) all the way back to block #0, known as the genesis block. Over time, as
the "height" in blocks increases, so does the computation difficulty for each block and the chain as a
whole. The blocks mined after the one that contains Alice’s transaction act as further assurance, as
they pile on more computation in a longer and longer chain. By convention, any block with more
than six confirmations is considered irrevocable, because it would require an immense amount of
computation to invalidate and recalculate six blocks. We will examine the process of mining and
the way it builds trust in more detail in Mining and Consensus.
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Figure 13. Alice’s transaction included in block #277316

Spending the Transaction
Now that Alice’s transaction has been embedded in the blockchain as part of a block, it is part of the
distributed ledger of bitcoin and visible to all bitcoin applications. Each bitcoin client can
independently verify the transaction as valid and spendable. Full-index clients can track the source
of the funds from the moment the bitcoins were first generated in a block, incrementally from
transaction to transaction, until they reach Bob’s address. Lightweight clients can do what is called
a simplified payment verification (see Simplified Payment Verification (SPV) Nodes) by confirming
that the transaction is in the blockchain and has several blocks mined after it, thus providing
assurance that the network accepts it as valid.
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Bob can now spend the output from this and other transactions, by creating his own transactions
that reference these outputs as their inputs and assign them new ownership. For example, Bob can
pay a contractor or supplier by transferring value from Alice’s coffee cup payment to these new
owners. Most likely, Bob’s bitcoin software will aggregate many small payments into a larger
payment, perhaps concentrating all the day’s bitcoin revenue into a single transaction. This would
move the various payments into a single address, used as the store’s general "checking" account.
For a diagram of an aggregating transaction, see Transaction aggregating funds.

As Bob spends the payments received from Alice and other customers, he extends the chain of
transactions, which in turn are added to the global blockchain ledger for all to see and trust. Let’s
assume that Bob pays his web designer Gopesh in Bangalore for a new website page. Now the chain
of transactions will look like Alice’s transaction as part of a transaction chain from Joe to Gopesh.

Figure 14. Alice’s transaction as part of a transaction chain from Joe to Gopesh

The Bitcoin Client

Bitcoin Core: The Reference Implementation
You can download the reference client Bitcoin Core, also known as the "Satoshi client," from
bitcoin.org. The reference client implements all aspects of the bitcoin system, including wallets, a
transaction verification engine with a full copy of the entire transaction ledger (blockchain), and a
full network node in the peer-to-peer bitcoin network.

On Bitcoin’s Choose Your Wallet page, select Bitcoin Core to download the reference client.
Depending on your operating system, you will download an executable installer. For Windows, this
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is either a ZIP archive or an .exe executable. For Mac OS it is a .dmg disk image. Linux versions
include a PPA package for Ubuntu or a tar.gz archive. The bitcoin.org page that lists recommended
bitcoin clients is shown in Choosing a bitcoin client at bitcoin.org.

Figure 15. Choosing a bitcoin client at bitcoin.org

Running Bitcoin Core for the First Time

If you download an installable package, such as an .exe, .dmg, or PPA, you can install it the same
way as any application on your operating system. For Windows, run the .exe and follow the step-by-
step instructions. For Mac OS, launch the .dmg and drag the Bitcoin-QT icon into your Applications
folder. For Ubuntu, double-click the PPA in your File Explorer and it will open the package manager
to install the package. Once you have completed installation you should have a new application
called Bitcoin-Qt in your application list. Double-click the icon to start the bitcoin client.

The first time you run Bitcoin Core it will start downloading the blockchain, a process that might
take several days (see Bitcoin Core screen during the blockchain initialization). Leave it running in
the background until it displays "Synchronized" and no longer shows "out of sync" next to the
balance.
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Figure 16. Bitcoin Core screen during the blockchain initialization

TIP

Bitcoin Core keeps a full copy of the transaction ledger (blockchain), with every
transaction that has ever occurred on the bitcoin network since its inception in 2009.
This dataset is several gigabytes in size (approximately 16 GB in late 2013) and is
downloaded incrementally over several days. The client will not be able to process
transactions or update account balances until the full blockchain dataset is
downloaded. During that time, the client will display "out of sync" next to the account
balances and show "Synchronizing" in the footer. Make sure you have enough disk
space, bandwidth, and time to complete the initial synchronization.

Compiling Bitcoin Core from the Source Code

For developers, there is also the option to download the full source code as a ZIP archive or by
cloning the authoritative source repository from GitHub.  On the GitHub bitcoin page, select
Download ZIP from the sidebar. Alternatively, use the git command line to create a local copy of the
source code on your system. In the following example, we are cloning the source code from a Unix-
like command line, in Linux or Mac OS:
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$ git clone https://github.com/bitcoin/bitcoin.git
Cloning into 'bitcoin'...
remote: Counting objects: 31864, done.
remote: Compressing objects: 100% (12007/12007), done.
remote: Total 31864 (delta 24480), reused 26530 (delta 19621)
Receiving objects: 100% (31864/31864), 18.47 MiB | 119 KiB/s, done.
Resolving deltas: 100% (24480/24480), done.
$

TIP

The instructions and resulting output might vary from version to version. Follow the
documentation that comes with the code even if it differs from the instructions you
see here, and don’t be surprised if the output displayed on your screen is slightly
different from the examples here.

When the git cloning operation has completed, you will have a complete local copy of the source
code repository in the directory bitcoin. Change to this directory by typing cd bitcoin at the prompt:

$ cd bitcoin

By default, the local copy will be synchronized with the most recent code, which might be an
unstable or beta version of bitcoin. Before compiling the code, select a specific version by checking
out a release tag. This will synchronize the local copy with a specific snapshot of the code
repository identified by a keyword tag. Tags are used by the developers to mark specific releases of
the code by version number. First, to find the available tags, we use the git tag command:

$ git tag
v0.1.5
v0.1.6test1
v0.2.0
v0.2.10
v0.2.11
v0.2.12

[... many more tags ...]

v0.8.4rc2
v0.8.5
v0.8.6
v0.8.6rc1
v0.9.0rc1

The list of tags shows all the released versions of bitcoin. By convention, release candidates, which
are intended for testing, have the suffix "rc". Stable releases that can be run on production systems
have no suffix. From the preceding list, select the highest version release, which at this writing was
v0.9.0rc1. To synchronize the local code with this version, use the git checkout command:
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$ git checkout v0.9.0rc1
Note: checking out 'v0.9.0rc1'.

HEAD is now at 15ec451... Merge pull request #3605
$

The source code includes documentation, which can be found in a number of files. Review the main
documentation located in README.md in the bitcoin directory by typing more README.md at the
prompt and using the space bar to progress to the next page. In this chapter, we will build the
command-line bitcoin client, also known as bitcoind on Linux. Review the instructions for
compiling the bitcoind command-line client on your platform by typing more doc/build-unix.md.
Alternative instructions for Mac OS X and Windows can be found in the doc directory, as build-
osx.md or build-msw.md, respectively.

Carefully review the build prerequisites, which are in the first part of the build documentation.
These are libraries that must be present on your system before you can begin to compile bitcoin. If
these prerequisites are missing, the build process will fail with an error. If this happens because
you missed a prerequisite, you can install it and then resume the build process from where you left
off. Assuming the prerequisites are installed, you start the build process by generating a set of build
scripts using the autogen.sh script.

TIP

The Bitcoin Core build process was changed to use the autogen/configure/make system
starting with version 0.9. Older versions use a simple Makefile and work slightly
differently from the following example. Follow the instructions for the version you
want to compile. The autogen/configure/make introduced in 0.9 is likely to be the build
system used for all future versions of the code and is the system demonstrated in the
following examples.

$ ./autogen.sh
configure.ac:12: installing `src/build-aux/config.guess'
configure.ac:12: installing `src/build-aux/config.sub'
configure.ac:37: installing `src/build-aux/install-sh'
configure.ac:37: installing `src/build-aux/missing'
src/Makefile.am: installing `src/build-aux/depcomp'
$

The autogen.sh script creates a set of automatic configuration scripts that will interrogate your
system to discover the correct settings and ensure you have all the necessary libraries to compile
the code. The most important of these is the configure script that offers a number of different
options to customize the build process. Type ./configure --help to see the various options:
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$ ./configure --help

`configure' configures Bitcoin Core 0.9.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
  -h, --help              display this help and exit
      --help=short        display options specific to this package
      --help=recursive    display the short help of all the included packages
  -V, --version           display version information and exit

[... many more options and variables are displayed below ...]

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]

[... more options ...]

Use these variables to override the choices made by `configure' or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <info@bitcoin.org>.

$

The configure script allows you to enable or disable certain features of bitcoind through the use of
the --enable-FEATURE and --disable-FEATURE flags, where FEATURE is replaced by the feature
name, as listed in the help output. In this chapter, we will build the bitcoind client with all the
default features. We won’t be using the configuration flags, but you should review them to
understand what optional features are part of the client. Next, run the configure script to
automatically discover all the necessary libraries and create a customized build script for your
system:
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$ ./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... no
checking for mawk... mawk
checking whether make sets $(MAKE)... yes

[... many more system features are tested ...]

configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating src/test/Makefile
config.status: creating src/qt/Makefile
config.status: creating src/qt/test/Makefile
config.status: creating share/setup.nsi
config.status: creating share/qt/Info.plist
config.status: creating qa/pull-tester/run-bitcoind-for-test.sh
config.status: creating qa/pull-tester/build-tests.sh
config.status: creating src/bitcoin-config.h
config.status: executing depfiles commands
$

If all goes well, the configure command will end by creating the customized build scripts that will
allow us to compile bitcoind. If there are any missing libraries or errors, the configure command
will terminate with an error instead of creating the build scripts. If an error occurs, it is most likely
because of a missing or incompatible library. Review the build documentation again and make sure
you install the missing prerequisites. Then run configure again and see if that fixes the error. Next,
you will compile the source code, a process that can take up to an hour to complete. During the
compilation process you should see output every few seconds or every few minutes, or an error if
something goes wrong. The compilation process can be resumed at any time if interrupted. Type
make to start compiling:
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$ make
Making all in src
make[1]: Entering directory `/home/ubuntu/bitcoin/src'
make  all-recursive
make[2]: Entering directory `/home/ubuntu/bitcoin/src'
Making all in .
make[3]: Entering directory `/home/ubuntu/bitcoin/src'
  CXX    addrman.o
  CXX    alert.o
  CXX    rpcserver.o
  CXX    bloom.o
  CXX    chainparams.o

[... many more compilation messages follow ...]

  CXX    test_bitcoin-wallet_tests.o
  CXX    test_bitcoin-rpc_wallet_tests.o
  CXXLD  test_bitcoin
make[4]: Leaving directory `/home/ubuntu/bitcoin/src/test'
make[3]: Leaving directory `/home/ubuntu/bitcoin/src/test'
make[2]: Leaving directory `/home/ubuntu/bitcoin/src'
make[1]: Leaving directory `/home/ubuntu/bitcoin/src'
make[1]: Entering directory `/home/ubuntu/bitcoin'
make[1]: Nothing to be done for `all-am'.
make[1]: Leaving directory `/home/ubuntu/bitcoin'
$

If all goes well, bitcoind is now compiled. The final step is to install the bitcoind executable into the
system path using the make command:

$ sudo make install
Making install in src
Making install in .
 /bin/mkdir -p '/usr/local/bin'
  /usr/bin/install -c bitcoind bitcoin-cli '/usr/local/bin'
Making install in test
make  install-am
 /bin/mkdir -p '/usr/local/bin'
  /usr/bin/install -c test_bitcoin '/usr/local/bin'
$

You can confirm that bitcoin is correctly installed by asking the system for the path of the two
executables, as follows:
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$ which bitcoind
/usr/local/bin/bitcoind

$ which bitcoin-cli
/usr/local/bin/bitcoin-cli

The default installation of bitcoind puts it in /usr/local/bin. When you first run bitcoind, it will
remind you to create a configuration file with a strong password for the JSON-RPC interface. Run
bitcoind by typing bitcoind into the terminal:

$ bitcoind
Error: To use the "-server" option, you must set a rpcpassword in the configuration
file:
/home/ubuntu/.bitcoin/bitcoin.conf
It is recommended you use the following random password:
rpcuser=bitcoinrpc
rpcpassword=2XA4DuKNCbtZXsBQRRNDEwEY2nM6M4H9Tx5dFjoAVVbK
(you do not need to remember this password)
The username and password MUST NOT be the same.
If the file does not exist, create it with owner-readable-only file permissions.
It is also recommended to set alertnotify so you are notified of problems;
for example: alertnotify=echo %s | mail -s "Bitcoin Alert" admin@foo.com

Edit the configuration file in your preferred editor and set the parameters, replacing the password
with a strong password as recommended by bitcoind. Do not use the password shown here. Create
a file inside the .bitcoin directory so that it is named .bitcoin/bitcoin.conf and enter a username and
password:

rpcuser=bitcoinrpc
rpcpassword=2XA4DuKNCbtZXsBQRRNDEwEY2nM6M4H9Tx5dFjoAVVbK

While you’re editing this configuration file, you might want to set a few other options, such as
txindex (see Transaction Database Index and txindex Option). For a full listing of the available
options, type bitcoind --help.

Now, run the Bitcoin Core client. The first time you run it, it will rebuild the bitcoin blockchain by
downloading all the blocks. This is a multigigabyte file and will take an average of two days to
download in full. You can shorten the blockchain initialization time by downloading a partial copy
of the blockchain using a BitTorrent client from SourceForge.

Run bitcoind in the background with the option -daemon:
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$ bitcoind -daemon

Bitcoin version v0.9.0rc1-beta (2014-01-31 09:30:15 +0100)
Using OpenSSL version OpenSSL 1.0.1c 10 May 2012
Default data directory /home/bitcoin/.bitcoin
Using data directory /bitcoin/
Using at most 4 connections (1024 file descriptors available)
init message: Verifying wallet...
dbenv.open LogDir=/bitcoin/database ErrorFile=/bitcoin/db.log
Bound to [::]:8333
Bound to 0.0.0.0:8333
init message: Loading block index...
Opening LevelDB in /bitcoin/blocks/index
Opened LevelDB successfully
Opening LevelDB in /bitcoin/chainstate
Opened LevelDB successfully

[... more startup messages ...]

Using Bitcoin Core’s JSON-RPC API from the Command
Line
The Bitcoin Core client implements a JSON-RPC interface that can also be accessed using the
command-line helper bitcoin-cli. The command line allows us to experiment interactively with the
capabilities that are also available programmatically via the API. To start, invoke the help command
to see a list of the available bitcoin RPC commands:

$ bitcoin-cli help
addmultisigaddress nrequired ["key",...] ( "account" )
addnode "node" "add|remove|onetry"
backupwallet "destination"
createmultisig nrequired ["key",...]
createrawtransaction [{"txid":"id","vout":n},...] {"address":amount,...}
decoderawtransaction "hexstring"
decodescript "hex"
dumpprivkey "bitcoinaddress"
dumpwallet "filename"
getaccount "bitcoinaddress"
getaccountaddress "account"
getaddednodeinfo dns ( "node" )
getaddressesbyaccount "account"
getbalance ( "account" minconf )
getbestblockhash
getblock "hash" ( verbose )
getblockchaininfo
getblockcount
getblockhash index
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getblocktemplate ( "jsonrequestobject" )
getconnectioncount
getdifficulty
getgenerate
gethashespersec
getinfo
getmininginfo
getnettotals
getnetworkhashps ( blocks height )
getnetworkinfo
getnewaddress ( "account" )
getpeerinfo
getrawchangeaddress
getrawmempool ( verbose )
getrawtransaction "txid" ( verbose )
getreceivedbyaccount "account" ( minconf )
getreceivedbyaddress "bitcoinaddress" ( minconf )
gettransaction "txid"
gettxout "txid" n ( includemempool )
gettxoutsetinfo
getunconfirmedbalance
getwalletinfo
getwork ( "data" )
help ( "command" )
importprivkey "bitcoinprivkey" ( "label" rescan )
importwallet "filename"
keypoolrefill ( newsize )
listaccounts ( minconf )
listaddressgroupings
listlockunspent
listreceivedbyaccount ( minconf includeempty )
listreceivedbyaddress ( minconf includeempty )
listsinceblock ( "blockhash" target-confirmations )
listtransactions ( "account" count from )
listunspent ( minconf maxconf  ["address",...] )
lockunspent unlock [{"txid":"txid","vout":n},...]
move "fromaccount" "toaccount" amount ( minconf "comment" )
ping
sendfrom "fromaccount" "tobitcoinaddress" amount ( minconf "comment" "comment-to" )
sendmany "fromaccount" {"address":amount,...} ( minconf "comment" )
sendrawtransaction "hexstring" ( allowhighfees )
sendtoaddress "bitcoinaddress" amount ( "comment" "comment-to" )
setaccount "bitcoinaddress" "account"
setgenerate generate ( genproclimit )
settxfee amount
signmessage "bitcoinaddress" "message"
signrawtransaction "hexstring" (
[{"txid":"id","vout":n,"scriptPubKey":"hex","redeemScript":"hex"},...]
["privatekey1",...] sighashtype )
stop
submitblock "hexdata" ( "jsonparametersobject" )
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validateaddress "bitcoinaddress"
verifychain ( checklevel numblocks )
verifymessage "bitcoinaddress" "signature" "message"
walletlock
walletpassphrase "passphrase" timeout
walletpassphrasechange "oldpassphrase" "newpassphrase"

Getting Information on the Bitcoin Core Client Status

Commands: getinfo

Bitcoin’s getinfo RPC command displays basic information about the status of the bitcoin network
node, the wallet, and the blockchain database. Use bitcoin-cli to run it:

$ bitcoin-cli getinfo

{
    "version" : 90000,
    "protocolversion" : 70002,
    "walletversion" : 60000,
    "balance" : 0.00000000,
    "blocks" : 286216,
    "timeoffset" : -72,
    "connections" : 4,
    "proxy" : "",
    "difficulty" : 2621404453.06461525,
    "testnet" : false,
    "keypoololdest" : 1374553827,
    "keypoolsize" : 101,
    "paytxfee" : 0.00000000,
    "errors" : ""
}

The data is returned in JavaScript Object Notation (JSON), a format that can easily be "consumed"
by all programming languages but is also quite human-readable. Among this data we see the
version numbers for the bitcoin software client (90000), protocol (70002), and wallet (60000). We
see the current balance contained in the wallet, which is zero. We see the current block height,
showing us how many blocks are known to this client (286216). We also see various statistics about
the bitcoin network and the settings related to this client. We will explore these settings in more
detail in the rest of this chapter.

TIP
It will take some time, perhaps more than a day, for the bitcoind client to "catch up" to
the current blockchain height as it downloads blocks from other bitcoin clients. You
can check its progress using getinfo to see the number of known blocks.
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Wallet Setup and Encryption

Commands: encryptwallet, walletpassphrase

Before you proceed with creating keys and other commands, you should first encrypt the wallet
with a password. For this example, you will use the encryptwallet command with the password
"foo". Obviously, replace "foo" with a strong and complex password!

$ bitcoin-cli encryptwallet foo
wallet encrypted; Bitcoin server stopping, restart to run with encrypted wallet. The
keypool has been flushed, you need to make a new backup.
$

You can verify the wallet has been encrypted by running getinfo again. This time you will notice a
new entry called unlocked_until. This is a counter showing how long the wallet decryption
password will be stored in memory, keeping the wallet unlocked. At first this will be set to zero,
meaning the wallet is locked:

$ bitcoin-cli getinfo

{
    "version" : 90000,

#[... other information...]

    "unlocked_until" : 0,
    "errors" : ""
}
$

To unlock the wallet, issue the walletpassphrase command, which takes two parameters—the
password and a number of seconds until the wallet is locked again automatically (a time counter):

$ bitcoin-cli walletpassphrase foo 360
$

You can confirm the wallet is unlocked and see the timeout by running getinfo again:

$ bitcoin-cli getinfo
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{
    "version" : 90000,

#[... other information ...]

    "unlocked_until" : 1392580909,
    "errors" : ""
}

Wallet Backup, Plain-text Dump, and Restore

Commands: backupwallet, importwallet, dumpwallet

Next, we will practice creating a wallet backup file and then restoring the wallet from the backup
file. Use the backupwallet command to back up, providing the filename as the parameter. Here we
back up the wallet to the file wallet.backup:

$ bitcoin-cli backupwallet wallet.backup
$

Now, to restore the backup file, use the importwallet command. If your wallet is locked, you will
need to unlock it first (see walletpassphrase in the preceding section) in order to import the backup
file:

$ bitcoin-cli importwallet wallet.backup
$

The dumpwallet command can be used to dump the wallet into a text file that is human-readable:

$ bitcoin-cli dumpwallet wallet.txt
$ more wallet.txt
# Wallet dump created by Bitcoin v0.9.0rc1-beta (2014-01-31 09:30:15 +0100)
# * Created on 2014-02- 8dT20:34:55Z
# * Best block at time of backup was 286234
(0000000000000000f74f0bc9d3c186267bc45c7b91c49a0386538ac24c0d3a44),
#   mined on 2014-02- 8dT20:24:01Z

KzTg2wn6Z8s7ai5NA9MVX4vstHRsqP26QKJCzLg4JvFrp6mMaGB9 2013-07- 4dT04:30:27Z change=1 #
addr=16pJ6XkwSQv5ma5FSXMRPaXEYrENCEg47F
Kz3dVz7R6mUpXzdZy4gJEVZxXJwA15f198eVui4CUivXotzLBDKY 2013-07- 4dT04:30:27Z change=1 #
addr=17oJds8kaN8LP8kuAkWTco6ZM7BGXFC3gk
[... many more keys ...]

$
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Wallet Addresses and Receiving Transactions

Commands: getnewaddress, getreceivedbyaddress, listtransactions, getaddressesbyaccount,
getbalance

The bitcoin reference client maintains a pool of addresses, the size of which is displayed by
keypoolsize when you use the command getinfo. These addresses are generated automatically and
can then be used as public receiving addresses or change addresses. To get one of these addresses,
use the getnewaddress command:

$ bitcoin-cli getnewaddress
1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL

Now, we can use this address to send a small amount of bitcoin to our bitcoind wallet from an
external wallet (assuming you have some bitcoin in an exchange, web wallet, or other bitcoind
wallet held elsewhere). For this example, we will send 50 millibits (0.050 bitcoin) to the preceding
address.

We can now query the bitcoind client for the amount received by this address, and specify how
many confirmations are required before an amount is counted in that balance. For this example,
we will specify zero confirmations. A few seconds after sending the bitcoin from another wallet, we
will see it reflected in the wallet. We use getreceivedbyaddress with the address and the number of
confirmations set to zero (0):

$ bitcoin-cli getreceivedbyaddress 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL 0
0.05000000

If we omit the zero from the end of this command, we will only see the amounts that have at least
minconf confirmations, where minconf is the setting for the minimum number of confirmations
before a transaction is listed in the balance. The minconf setting is specified in the bitcoind
configuration file. Because the transaction sending this bitcoin was only sent in the last few
seconds, it has still not confirmed and therefore we will see it list a zero balance:

$ bitcoin-cli getreceivedbyaddress 1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL
0.00000000

The transactions received by the entire wallet can also be displayed using the listtransactions
command:

$ bitcoin-cli listtransactions
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[
    {
        "account" : "",
        "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
        "category" : "receive",
        "amount" : 0.05000000,
        "confirmations" : 0,
        "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
        "time" : 1392660908,
        "timereceived" : 1392660908
    }
]

We can list all addresses in the entire wallet using the getaddressesbyaccount command:

$ bitcoin-cli getaddressesbyaccount ""

[
    "1LQoTPYy1TyERbNV4zZbhEmgyfAipC6eqL",
    "17vrg8uwMQUibkvS2ECRX4zpcVJ78iFaZS",
    "1FvRHWhHBBZA8cGRRsGiAeqEzUmjJkJQWR",
    "1NVJK3JsL41BF1KyxrUyJW5XHjunjfp2jz",
    "14MZqqzCxjc99M5ipsQSRfieT7qPZcM7Df",
    "1BhrGvtKFjTAhGdPGbrEwP3xvFjkJBuFCa",
    "15nem8CX91XtQE8B1Hdv97jE8X44H3DQMT",
    "1Q3q6taTsUiv3mMemEuQQJ9sGLEGaSjo81",
    "1HoSiTg8sb16oE6SrmazQEwcGEv8obv9ns",
    "13fE8BGhBvnoy68yZKuWJ2hheYKovSDjqM",
    "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
    "1KHUmVfCJteJ21LmRXHSpPoe23rXKifAb2",
    "1LqJZz1D9yHxG4cLkdujnqG5jNNGmPeAMD"
]

Finally, the command getbalance will show the total balance of the wallet, adding up all
transactions confirmed with at least minconf confirmations:

$ bitcoin-cli getbalance
0.05000000

TIP
If the transaction has not yet confirmed, the balance returned by getbalance will be
zero. The configuration option "minconf" determines the minimum number of
confirmations that are required before a transaction shows in the balance.
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Exploring and Decoding Transactions

Commands: gettransaction, getrawtransaction, decoderawtransaction

We’ll now explore the incoming transaction that was listed previously using the gettransaction
command. We can retrieve a transaction by its transaction hash, shown at txid earlier, with the
gettransaction command:

{
    "amount" : 0.05000000,
    "confirmations" : 0,
    "txid" : "9ca8f969bd3ef5ec2a8685660fdbf7a8bd365524c2e1fc66c309acbae2c14ae3",
    "time" : 1392660908,
    "timereceived" : 1392660908,
    "details" : [
        {
            "account" : "",
            "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
            "category" : "receive",
            "amount" : 0.05000000
        }
    ]
}

TIP

Transaction IDs are not authoritative until a transaction has been confirmed. Absence
of a transaction hash in the blockchain does not mean the transaction was not
processed. This is known as "transaction malleability," because transaction hashes can
be modified prior to confirmation in a block. After confirmation, the txid is immutable
and authoritative.

The transaction form shown with the command gettransaction is the simplified form. To retrieve
the full transaction code and decode it, we will use two commands: getrawtransaction and
decoderawtransaction. First, getrawtransaction takes the transaction hash (txid) as a parameter and
returns the full transaction as a "raw" hex string, exactly as it exists on the bitcoin network:

To decode this hex string, use the decoderawtransaction command. Copy and paste the hex as the
first parameter of decoderawtransaction to get the full contents interpreted as a JSON data
structure (for formatting reasons the hex string is shortened in the following example):

The transaction decode shows all the components of this transaction, including the transaction
inputs and outputs. In this case we see that the transaction that credited our new address with 50
millibits used one input and generated two outputs. The input to this transaction was the output
from a previously confirmed transaction (shown as the vin txid starting with d3c7). The two
outputs correspond to the 50 millibit credit and an output with change back to the sender.

We can further explore the blockchain by examining the previous transaction referenced by its txid
in this transaction using the same commands (e.g., gettransaction). Jumping from transaction to
transaction we can follow a chain of transactions back as the coins are transmitted from owner
address to owner address.

50



Once the transaction we received has been confirmed by inclusion in a block, the gettransaction
command will return additional information, showing the block hash (identifier) in which the
transaction was included:

Here, we see the new information in the entries blockhash (the hash of the block in which the
transaction was included), and blockindex with value 18 (indicating that our transaction was the
18th transaction in that block).

Transaction Database Index and txindex Option

By default, Bitcoin Core builds a database containing only the transactions related to the
user’s wallet. If you want to be able to access any transaction with commands like
gettransaction, you need to configure Bitcoin Core to build a complete transaction index,
which can be achieved with the txindex option. Set txindex=1 in the Bitcoin Core
configuration file (usually found in your home directory under .bitcoin/bitcoin.conf). Once you
change this parameter, you need to restart bitcoind and wait for it to rebuild the index.

Exploring Blocks

Commands: getblock, getblockhash

Now that we know which block our transaction was included in, we can query that block. We use
the getblock command with the block hash as the parameter:

The block contains 367 transactions and as you can see, the 18th transaction listed (9ca8f9...) is the
txid of the one crediting 50 millibits to our address. The height entry tells us this is the 286384th
block in the blockchain.

We can also retrieve a block by its block height using the getblockhash command, which takes the
block height as the parameter and returns the block hash for that block:

Here, we retrieve the block hash of the "genesis block," the first block mined by Satoshi Nakamoto,
at height zero. Retrieving this block shows:

The getblock, getblockhash, and gettransaction commands can be used to explore the blockchain
database, programmatically.

Creating, Signing, and Submitting Transactions Based on Unspent Outputs

Commands: listunspent, gettxout, createrawtransaction, decoderawtransaction,
signrawtransaction, sendrawtransaction

Bitcoin’s transactions are based on the concept of spending "outputs," which are the result of
previous transactions, to create a transaction chain that transfers ownership from address to
address. Our wallet has now received a transaction that assigned one such output to our address.
Once this is confirmed, we can spend that output.

First, we use the listunspent command to show all the unspent confirmed outputs in our wallet:
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$ bitcoin-cli listunspent

We see that the transaction 9ca8f9... created an output (with vout index 0) assigned to the address
1hvzSo... for the amount of 50 millibits, which at this point has received seven confirmations.
Transactions use previously created outputs as their inputs by referring to them by the previous
txid and vout index. We will now create a transaction that will spend the 0th vout of the txid
9ca8f9... as its input and assign it to a new output that sends value to a new address.

First, let’s look at the specific output in more detail. We use gettxout to get the details of this
unspent output. Transaction outputs are always referenced by txid and vout, and these are the
parameters we pass to gettxout:

What we see here is the output that assigned 50 millibits to our address 1hvz.... To spend this output
we will create a new transaction. First, let’s make an address to which we will send the money:

$ bitcoin-cli getnewaddress
1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb

We will send 25 millibits to the new address 1LnfTn... we just created in our wallet. In our new
transaction, we will spend the 50 millibit output and send 25 millibits to this new address. Because
we have to spend the whole output from the previous transaction, we must also generate some
change. We will generate change back to the 1hvz... address, sending the change back to the address
from which the value originated. Finally, we will also have to pay a fee for this transaction. To pay
the fee, we will reduce the change output by 0.5 millibits, and return 24.5 millibits in change. The
difference between the sum of the new outputs (25 mBTC + 24.5 mBTC = 49.5 mBTC) and the input
(50 mBTC) will be collected as a transaction fee by the miners.

We use createrawtransaction to create this transaction. As parameters to createrawtransaction we
provide the transaction input (the 50 millibit unspent output from our confirmed transaction) and
the two transaction outputs (money sent to the new address and change sent back to the previous
address):

The createrawtransaction command produces a raw hex string that encodes the transaction details
we supplied. Let’s confirm everything is correct by decoding this raw string using the
decoderawtransaction command:

That looks correct! Our new transaction "consumes" the unspent output from our confirmed
transaction and then spends it in two outputs, one for 25 millibits to our new address and one for
24.5 millibits as change back to the original address. The difference of 0.5 millibits represents the
transaction fee and will be credited to the miner who finds the block that includes our transaction.

As you might notice, the transaction contains an empty scriptSig because we haven’t signed it yet.
Without a signature, this transaction is meaningless; we haven’t yet proven that we own the
address from which the unspent output is sourced. By signing, we remove the lock on the output
and prove that we own this output and can spend it. We use the signrawtransaction command to
sign the transaction. It takes the raw transaction hex string as the parameter:

52



TIP
An encrypted wallet must be unlocked before a transaction is signed because signing
requires access to the secret keys in the wallet.

The signrawtransaction command returns another hex-encoded raw transaction. We decode it to
see what changed, with decoderawtransaction:

Now, the inputs used in the transaction contain a scriptSig, which is a digital signature proving
ownership of address 1hvz... and removing the lock on the output so that it can be spent. The
signature makes this transaction verifiable by any node in the bitcoin network.

Now it’s time to submit the newly created transaction to the network. We do that with the
command sendrawtransaction, which takes the raw hex string produced by signrawtransaction.
This is the same string we just decoded:

The command sendrawtransaction returns a transaction hash (txid) as it submits the transaction on
the network. We can now query that transaction ID with gettransaction:
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{
    "amount" : 0.00000000,
    "fee" : -0.00050000,
    "confirmations" : 0,
    "txid" : "ae74538baa914f3799081ba78429d5d84f36a0127438e9f721dff584ac17b346",
    "time" : 1392666702,
    "timereceived" : 1392666702,
    "details" : [
        {
            "account" : "",
            "address" : "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb",
            "category" : "send",
            "amount" : -0.02500000,
            "fee" : -0.00050000
        },
        {
            "account" : "",
            "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
            "category" : "send",
            "amount" : -0.02450000,
            "fee" : -0.00050000
        },
        {
            "account" : "",
            "address" : "1LnfTndy3qzXGN19Jwscj1T8LR3MVe3JDb",
            "category" : "receive",
            "amount" : 0.02500000
        },
        {
            "account" : "",
            "address" : "1hvzSofGwT8cjb8JU7nBsCSfEVQX5u9CL",
            "category" : "receive",
            "amount" : 0.02450000
        }
    ]
}

As before, we can also examine this in more detail using the getrawtransaction and
decodetransaction commands. These commands will return the exact same hex string that we
produced and decoded previously just before we sent it on the network.

Alternative Clients, Libraries, and Toolkits
Beyond the reference client (bitcoind), other clients and libraries can be used to interact with the
bitcoin network and data structures. These are implemented in a variety of programming
languages, offering programmers native interfaces in their own language.

Alternative implementations include:

54



libbitcoin

Bitcoin Cross-Platform C++ Development Toolkit

bitcoin explorer

Bitcoin Command Line Tool

bitcoin server

Bitcoin Full Node and Query Server

bitcoinj

A Java full-node client library

btcd

A Go language full-node bitcoin client

Bits of Proof (BOP)

A Java enterprise-class implementation of bitcoin

picocoin

A C implementation of a lightweight client library for bitcoin

pybitcointools

A Python bitcoin library

pycoin

Another Python bitcoin library

Many more libraries exist in a variety of other programming languages and more are created all
the time.

Libbitcoin and Bitcoin Explorer

The libbitcoin library is a cross-platform C++ development toolkit that supports the libbitcoin-
server full node and the Bitcoin Explorer (bx) command line tool.

The bx commands offer many of the same capabilities as the bitcoind client commands we
illustrated in this chapter. The bx commands also offer some key management and manipulation
tools that are not offered by bitcoind, including type-2 deterministic keys and mnemonic key
encoding, as well as stealth address, payment, and query support.

Installing Bitcoin Explorer

To use Bitcoin Explorer, simply download the signed executable for your operating system. Builds
are available for mainnet and testnet for Linux, OS X, and Windows.

Type bx with no parameters to display the list of all available commands (see Bitcoin Explorer (bx)
Commands).

Bitcoin Explorer also provides an installer for building from sources on Linux and OS X, as well as

55

https://github.com/libbitcoin/libbitcoin
https://github.com/libbitcoin/libbitcoin-explorer
https://github.com/libbitcoin/libbitcoin-server
https://code.google.com/p/bitcoinj/
https://opensource.conformal.com/wiki/btcd
https://bitsofproof.com
https://github.com/jgarzik/picocoin
https://github.com/vbuterin/pybitcointools
https://github.com/richardkiss/pycoin
https://github.com/libbitcoin/libbitcoin-explorer/wiki/Download
https://github.com/libbitcoin/libbitcoin-explorer/wiki/Build


Visual Studio projects for Windows. Sources can also be built manually using Autotools. These also
install the libbitcoin library dependency.

TIP
Bitcoin Explorer offers many useful commands for encoding and decoding addresses,
and converting to and from different formats and representations. Use them to
explore the various formats such as Base16 (hex), Base58, Base58Check, Base64, etc.

Installing Libbitcoin

The libbitcoin library provides an installer for building from sources on Linux and OS X, as well as
Visual Studio projects for Windows. Sources can also be built manually using Autotools.

TIP
The Bitcoin Explorer installer installs both bx and the libbitcoin library, so if you have
built bx from sources, you can skip this step.

pycoin

The Python library pycoin, originally written and maintained by Richard Kiss, is a Python-based
library that supports manipulation of bitcoin keys and transactions, even supporting the scripting
language enough to properly deal with nonstandard transactions.

The pycoin library supports both Python 2 (2.7.x) and Python 3 (after 3.3), and comes with some
handy command-line utilities, ku and tx. To install pycoin 0.42 under Python 3 in a virtual
environment (venv), use the following:

$ python3 -m venv /tmp/pycoin
$ . /tmp/pycoin/bin/activate
$ pip install pycoin==0.42
Downloading/unpacking pycoin==0.42
  Downloading pycoin-0.42.tar.gz (66kB): 66kB downloaded
  Running setup.py (path:/tmp/pycoin/build/pycoin/setup.py) egg_info for package
pycoin

Installing collected packages: pycoin
  Running setup.py install for pycoin

    Installing tx script to /tmp/pycoin/bin
    Installing cache_tx script to /tmp/pycoin/bin
    Installing bu script to /tmp/pycoin/bin
    Installing fetch_unspent script to /tmp/pycoin/bin
    Installing block script to /tmp/pycoin/bin
    Installing spend script to /tmp/pycoin/bin
    Installing ku script to /tmp/pycoin/bin
    Installing genwallet script to /tmp/pycoin/bin
Successfully installed pycoin
Cleaning up...
$
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Here’s a sample Python script to fetch and spend some bitcoin using the pycoin library:

#!/usr/bin/env python

from pycoin.key import Key

from pycoin.key.validate import is_address_valid, is_wif_valid
from pycoin.services import spendables_for_address
from pycoin.tx.tx_utils import create_signed_tx

def get_address(which):
    while 1:
        print("enter the %s address=> " % which, end='')
        address = input()
        is_valid = is_address_valid(address)
        if is_valid:
            return address
        print("invalid address, please try again")

src_address = get_address("source")
spendables = spendables_for_address(src_address)
print(spendables)

while 1:
    print("enter the WIF for %s=> " % src_address, end='')
    wif = input()
    is_valid = is_wif_valid(wif)
    if is_valid:
        break
    print("invalid wif, please try again")

key = Key.from_text(wif)
if src_address not in (key.address(use_uncompressed=False),
key.address(use_uncompressed=True)):
    print("** WIF doesn't correspond to %s" % src_address)
print("The secret exponent is %d" % key.secret_exponent())

dst_address = get_address("destination")

tx = create_signed_tx(spendables, payables=[dst_address], wifs=[wif])

print("here is the signed output transaction")
print(tx.as_hex())

For examples using the command-line utilities ku and tx, see pycoin, ku, and tx.
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btcd

btcd is a full-node bitcoin implementation written in Go. It currently downloads, validates, and
serves the blockchain using the exact rules (including bugs) for block acceptance as the reference
implementation, bitcoind. It also properly relays newly mined blocks, maintains a transaction pool,
and relays individual transactions that have not yet made it into a block. It ensures that all
individual transactions admitted to the pool follow the rules required and also includes the vast
majority of the more strict checks that filter transactions based on miner requirements ("standard"
transactions).

One key difference between btcd and bitcoind is that btcd does not include wallet functionality, and
this was a very intentional design decision. This means you can’t actually make or receive
payments directly with btcd. That functionality is provided by the btcwallet and btcgui projects,
which are both under active development. Other notable differences between btcd and bitcoind
include btcd support for both HTTP POST requests (such as bitcoind) and the preferred Websockets,
and the fact that btcd’s RPC connections are TLS-enabled by default.

Installing btcd

To install btcd for Windows, download and run the msi available at GitHub, or run the following
command on Linux, assuming you already have installed the Go language:

$ go get github.com/conformal/btcd/...

To update btcd to the latest version, just run:

$ go get -u -v github.com/conformal/btcd/...

Controlling btcd

btcd has a number of configuration options, which you can view by running:

$ btcd --help

btcd comes prepackaged with some goodies such as btcctl, which is a command-line utility that can
be used to both control and query btcd via RPC. btcd does not enable its RPC server by default; you
must configure at minimum both an RPC username and password in the following configuration
files:

• btcd.conf:

[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd
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• btcctl.conf:

[Application Options]
rpcuser=myuser
rpcpass=SomeDecentp4ssw0rd

Or if you want to override the configuration files from the command line:

$ btcd -u myuser -P SomeDecentp4ssw0rd
$ btcctl -u myuser -P SomeDecentp4ssw0rd

For a list of available options, run the following:

$ btcctl --help

Keys, Addresses, Wallets

Introduction
Ownership of bitcoin is established through digital keys, bitcoin addresses, and digital signatures.
The digital keys are not actually stored in the network, but are instead created and stored by users
in a file, or simple database, called a wallet. The digital keys in a user’s wallet are completely
independent of the bitcoin protocol and can be generated and managed by the user’s wallet
software without reference to the blockchain or access to the Internet. Keys enable many of the
interesting properties of bitcoin, including de-centralized trust and control, ownership attestation,
and the cryptographic-proof security model.

Every bitcoin transaction requires a valid signature to be included in the blockchain, which can
only be generated with valid digital keys; therefore, anyone with a copy of those keys has control of
the bitcoin in that account. Keys come in pairs consisting of a private (secret) key and a public key.
Think of the public key as similar to a bank account number and the private key as similar to the
secret PIN, or signature on a check that provides control over the account. These digital keys are
very rarely seen by the users of bitcoin. For the most part, they are stored inside the wallet file and
managed by the bitcoin wallet software.

In the payment portion of a bitcoin transaction, the recipient’s public key is represented by its
digital fingerprint, called a bitcoin address, which is used in the same way as the beneficiary name
on a check (i.e., "Pay to the order of"). In most cases, a bitcoin address is generated from and
corresponds to a public key. However, not all bitcoin addresses represent public keys; they can also
represent other beneficiaries such as scripts, as we will see later in this chapter. This way, bitcoin
addresses abstract the recipient of funds, making transaction destinations flexible, similar to paper
checks: a single payment instrument that can be used to pay into people’s accounts, pay into
company accounts, pay for bills, or pay to cash. The bitcoin address is the only representation of the
keys that users will routinely see, because this is the part they need to share with the world.
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In this chapter we will introduce wallets, which contain cryptographic keys. We will look at how
keys are generated, stored, and managed. We will review the various encoding formats used to
represent private and public keys, addresses, and script addresses. Finally, we will look at special
uses of keys: to sign messages, to prove ownership, and to create vanity addresses and paper
wallets.

Public Key Cryptography and Cryptocurrency

Public key cryptography was invented in the 1970s and is a mathematical foundation for computer
and information security.

Since the invention of public key cryptography, several suitable mathematical functions, such as
prime number exponentiation and elliptic curve multiplication, have been discovered. These
mathematical functions are practically irreversible, meaning that they are easy to calculate in one
direction and infeasible to calculate in the opposite direction. Based on these mathematical
functions, cryptography enables the creation of digital secrets and unforgeable digital signatures.
Bitcoin uses elliptic curve multiplication as the basis for its public key cryptography.

In bitcoin, we use public key cryptography to create a key pair that controls access to bitcoins. The
key pair consists of a private key and—derived from it—a unique public key. The public key is used
to receive bitcoins, and the private key is used to sign transactions to spend those bitcoins.

There is a mathematical relationship between the public and the private key that allows the private
key to be used to generate signatures on messages. This signature can be validated against the
public key without revealing the private key.

When spending bitcoins, the current bitcoin owner presents her public key and a signature
(different each time, but created from the same private key) in a transaction to spend those
bitcoins. Through the presentation of the public key and signature, everyone in the bitcoin network
can verify and accept the transaction as valid, confirming that the person transferring the bitcoins
owned them at the time of the transfer.

TIP
In most wallet implementations, the private and public keys are stored together as a
key pair for convenience. However, the public key can be calculated from the private
key, so storing only the private key is also possible.

Private and Public Keys

A bitcoin wallet contains a collection of key pairs, each consisting of a private key and a public key.
The private key (k) is a number, usually picked at random. From the private key, we use elliptic
curve multiplication, a one-way cryptographic function, to generate a public key (K). From the
public key (K), we use a one-way cryptographic hash function to generate a bitcoin address (A). In
this section, we will start with generating the private key, look at the elliptic curve math that is used
to turn that into a public key, and finally, generate a bitcoin address from the public key. The
relationship between private key, public key, and bitcoin address is shown in Private key, public
key, and bitcoin address.
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Figure 17. Private key, public key, and bitcoin address

Private Keys

A private key is simply a number, picked at random. Ownership and control over the private key is
the root of user control over all funds associated with the corresponding bitcoin address. The
private key is used to create signatures that are required to spend bitcoins by proving ownership of
funds used in a transaction. The private key must remain secret at all times, because revealing it to
third parties is equivalent to giving them control over the bitcoins secured by that key. The private
key must also be backed up and protected from accidental loss, because if it’s lost it cannot be
recovered and the funds secured by it are forever lost, too.

TIP

The bitcoin private key is just a number. You can pick your private keys randomly
using just a coin, pencil, and paper: toss a coin 256 times and you have the binary
digits of a random private key you can use in a bitcoin wallet. The public key can then
be generated from the private key.

Generating a private key from a random number

The first and most important step in generating keys is to find a secure source of entropy, or
randomness. Creating a bitcoin key is essentially the same as "Pick a number between 1 and 2256."
The exact method you use to pick that number does not matter as long as it is not predictable or
repeatable. Bitcoin software uses the underlying operating system’s random number generators to
produce 256 bits of entropy (randomness). Usually, the OS random number generator is initialized
by a human source of randomness, which is why you may be asked to wiggle your mouse around
for a few seconds. For the truly paranoid, nothing beats dice, pencil, and paper.

More accurately, the private key can be any number between 1 and n - 1, where n is a constant (n =
1.158 * 1077, slightly less than 2256) defined as the order of the elliptic curve used in bitcoin (see
Elliptic Curve Cryptography Explained). To create such a key, we randomly pick a 256-bit number
and check that it is less than n - 1. In programming terms, this is usually achieved by feeding a
larger string of random bits, collected from a cryptographically secure source of randomness, into
the SHA256 hash algorithm that will conveniently produce a 256-bit number. If the result is less
than n - 1, we have a suitable private key. Otherwise, we simply try again with another random
number.
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TIP

Do not write your own code to create a random number or use a "simple" random
number generator offered by your programming language. Use a cryptographically
secure pseudo-random number generator (CSPRNG) with a seed from a source of
sufficient entropy. Study the documentation of the random number generator library
you choose to make sure it is cryptographically secure. Correct implementation of the
CSPRNG is critical to the security of the keys.

The following is a randomly generated private key (k) shown in hexadecimal format (256 binary
digits shown as 64 hexadecimal digits, each 4 bits):

1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD

TIP
The size of bitcoin’s private key space, 2256 is an unfathomably large number. It is
approximately 1077 in decimal. The visible universe is estimated to contain 1080 atoms.

To generate a new key with the Bitcoin Core client (see The Bitcoin Client), use the getnewaddress
command. For security reasons it displays the public key only, not the private key. To ask bitcoind to
expose the private key, use the dumpprivkey command. The dumpprivkey command shows the
private key in a Base58 checksum-encoded format called the Wallet Import Format (WIF), which we
will examine in more detail in Private key formats. Here’s an example of generating and displaying
a private key using these two commands:

$ bitcoind getnewaddress
1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
$ bitcoind dumpprivkey 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

The dumpprivkey command opens the wallet and extracts the private key that was generated by
the getnewaddress command. It is not otherwise possible for bitcoind to know the private key from
the public key, unless they are both stored in the wallet.

TIP
The dumpprivkey command is not generating a private key from a public key, as this
is impossible. The command simply reveals the private key that is already known to
the wallet and which was generated by the getnewaddress command.

You can also use the Bitcoin Explorer command-line tool (see Libbitcoin and Bitcoin Explorer) to
generate and display private keys with the commands seed, ec-new and ec-to-wif:

$ bx seed | bx ec-new | bx ec-to-wif
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Public Keys

The public key is calculated from the private key using elliptic curve multiplication, which is
irreversible: \(K = k * G\) where k is the private key, G is a constant point called the generator point
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and K is the resulting public key. The reverse operation, known as "finding the discrete
logarithm"—calculating k if you know K—is as difficult as trying all possible values of k, i.e., a
brute-force search. Before we demonstrate how to generate a public key from a private key, let’s
look at elliptic curve cryptography in a bit more detail.

Elliptic Curve Cryptography Explained

Elliptic curve cryptography is a type of asymmetric or public-key cryptography based on the
discrete logarithm problem as expressed by addition and multiplication on the points of an elliptic
curve.

An elliptic curve is an example of an elliptic curve, similar to that used by bitcoin.

Figure 18. An elliptic curve

Bitcoin uses a specific elliptic curve and set of mathematical constants, as defined in a standard
called secp256k1, established by the National Institute of Standards and Technology (NIST). The
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secp256k1 curve is defined by the following function, which produces an elliptic curve:

or

The mod p (modulo prime number p) indicates that this curve is over a finite field of prime order p,
also written as \(\mathbb{F}_p\), where p = 2256 – 232 – 29 – 28 – 27 – 26 – 24 – 1, a very large prime
number.

Because this curve is defined over a finite field of prime order instead of over the real numbers, it
looks like a pattern of dots scattered in two dimensions, which makes it difficult to visualize.
However, the math is identical as that of an elliptic curve over the real numbers. As an example,
Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17 shows the same
elliptic curve over a much smaller finite field of prime order 17, showing a pattern of dots on a grid.
The secp256k1 bitcoin elliptic curve can be thought of as a much more complex pattern of dots on a
unfathomably large grid.

Figure 19. Elliptic curve cryptography: visualizing an elliptic curve over F(p), with p=17

So, for example, the following is a point P with coordinates (x,y) that is a point on the secp256k1
curve. You can check this yourself using Python:
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P = (55066263022277343669578718895168534326250603453777594175500187360389116729240,
32670510020758816978083085130507043184471273380659243275938904335757337482424)

Python 3.4.0 (default, Mar 30 2014, 19:23:13)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.38)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> p =
115792089237316195423570985008687907853269984665640564039457584007908834671663
>>> x =
55066263022277343669578718895168534326250603453777594175500187360389116729240
>>> y =
32670510020758816978083085130507043184471273380659243275938904335757337482424
>>> (x ** 3 + 7 - y**2) % p
0

In elliptic curve math, there is a point called the "point at infinity," which roughly corresponds to
the role of 0 in addition. On computers, it’s sometimes represented by x = y = 0 (which doesn’t
satisfy the elliptic curve equation, but it’s an easy separate case that can be checked).

There is also a + operator, called "addition," which has some properties similar to the traditional
addition of real numbers that grade school children learn. Given two points P1 and P2 on the elliptic
curve, there is a third point P3 = P1 + P2, also on the elliptic curve.

Geometrically, this third point P3 is calculated by drawing a line between P1 and P2. This line will
intersect the elliptic curve in exactly one additional place. Call this point P3' = (x, y). Then reflect in
the x-axis to get P3 = (x, –y).

There are a couple of special cases that explain the need for the "point at infinity."

If P1 and P2 are the same point, the line "between" P1 and P2 should extend to be the tangent on the
curve at this point P1. This tangent will intersect the curve in exactly one new point. You can use
techniques from calculus to determine the slope of the tangent line. These techniques curiously
work, even though we are restricting our interest to points on the curve with two integer
coordinates!

In some cases (i.e., if P1 and P2 have the same x values but different y values), the tangent line will
be exactly vertical, in which case P3 = "point at infinity."

If P1 is the "point at infinity," then the sum P1 + P2 = P2. Similary, if P2 is the point at infinity, then P1 +
P2 = P1. This shows how the point at infinity plays the role of 0.

It turns out that + is associative, which means that (A + B) + C = A + (B + C). That means we can write
A + B + C without parentheses without any ambiguity.

Now that we have defined addition, we can define multiplication in the standard way that extends
addition. For a point P on the elliptic curve, if k is a whole number, then kP = P + P + P + … + P (k
times). Note that k is sometimes confusingly called an "exponent" in this case.
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Generating a Public Key

Starting with a private key in the form of a randomly generated number k, we multiply it by a
predetermined point on the curve called the generator point G to produce another point
somewhere else on the curve, which is the corresponding public key K. The generator point is
specified as part of the secp256k1 standard and is always the same for all keys in bitcoin:

where k is the private key, G is the generator point, and K is the resulting public key, a point on the
curve. Because the generator point is always the same for all bitcoin users, a private key k
multiplied with G will always result in the same public key K. The relationship between k and K is
fixed, but can only be calculated in one direction, from k to K. That’s why a bitcoin address (derived
from K) can be shared with anyone and does not reveal the user’s private key (k).

TIP
A private key can be converted into a public key, but a public key cannot be converted
back into a private key because the math only works one way.

Implementing the elliptic curve multiplication, we take the private key k generated previously and
multiply it with the generator point G to find the public key K:

K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD * G

Public Key K is defined as a point K = (x,y):

K = (x, y)

where,

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

To visualize multiplication of a point with an integer, we will use the simpler elliptic curve over the
real numbers—remember, the math is the same. Our goal is to find the multiple kG of the generator
point G. That is the same as adding G to itself, k times in a row. In elliptic curves, adding a point to
itself is the equivalent of drawing a tangent line on the point and finding where it intersects the
curve again, then reflecting that point on the x-axis.

Elliptic curve cryptography: Visualizing the multiplication of a point G by an integer k on an elliptic
curve shows the process for deriving G, 2G, 4G, as a geometric operation on the curve.

TIP
Most bitcoin implementations use the OpenSSL cryptographic library to do the elliptic
curve math. For example, to derive the public key, the function EC_POINT_mul() is
used.
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Figure 20. Elliptic curve cryptography: Visualizing the multiplication of a point G by an integer k on an
elliptic curve

Bitcoin Addresses
A bitcoin address is a string of digits and characters that can be shared with anyone who wants to
send you money. Addresses produced from public keys consist of a string of numbers and letters,
beginning with the digit "1". Here’s an example of a bitcoin address:

1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

The bitcoin address is what appears most commonly in a transaction as the "recipient" of the funds.
If we were to compare a bitcoin transaction to a paper check, the bitcoin address is the beneficiary,
which is what we write on the line after "Pay to the order of." On a paper check, that beneficiary
can sometimes be the name of a bank account holder, but can also include corporations,
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institutions, or even cash. Because paper checks do not need to specify an account, but rather use
an abstract name as the recipient of funds, that makes paper checks very flexible as payment
instruments. Bitcoin transactions use a similar abstraction, the bitcoin address, to make them very
flexible. A bitcoin address can represent the owner of a private/public key pair, or it can represent
something else, such as a payment script, as we will see in Pay-to-Script-Hash (P2SH). For now, let’s
examine the simple case, a bitcoin address that represents, and is derived from, a public key.

The bitcoin address is derived from the public key through the use of one-way cryptographic
hashing. A "hashing algorithm" or simply "hash algorithm" is a one-way function that produces a
fingerprint or "hash" of an arbitrary-sized input. Cryptographic hash functions are used extensively
in bitcoin: in bitcoin addresses, in script addresses, and in the mining proof-of-work algorithm. The
algorithms used to make a bitcoin address from a public key are the Secure Hash Algorithm (SHA)
and the RACE Integrity Primitives Evaluation Message Digest (RIPEMD), specifically SHA256 and
RIPEMD160.

Starting with the public key K, we compute the SHA256 hash and then compute the RIPEMD160
hash of the result, producing a 160-bit (20-byte) number:

where K is the public key and A is the resulting bitcoin address.

TIP
A bitcoin address is not the same as a public key. Bitcoin addresses are derived from a
public key using a one-way function.

Bitcoin addresses are almost always presented to users in an encoding called "Base58Check" (see
Base58 and Base58Check Encoding), which uses 58 characters (a Base58 number system) and a
checksum to help human readability, avoid ambiguity, and protect against errors in address
transcription and entry. Base58Check is also used in many other ways in bitcoin, whenever there is
a need for a user to read and correctly transcribe a number, such as a bitcoin address, a private key,
an encrypted key, or a script hash. In the next section we will examine the mechanics of
Base58Check encoding and decoding, and the resulting representations. Public key to bitcoin
address: conversion of a public key into a bitcoin address illustrates the conversion of a public key
into a bitcoin address.
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Figure 21. Public key to bitcoin address: conversion of a public key into a bitcoin address

Base58 and Base58Check Encoding

In order to represent long numbers in a compact way, using fewer symbols, many computer
systems use mixed-alphanumeric representations with a base (or radix) higher than 10. For
example, whereas the traditional decimal system uses the 10 numerals 0 through 9, the
hexadecimal system uses 16, with the letters A through F as the six additional symbols. A number
represented in hexadecimal format is shorter than the equivalent decimal representation. Even
more compact, Base-64 representation uses 26 lower-case letters, 26 capital letters, 10 numerals,
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and two more characters such as "+" and "/" to transmit binary data over text-based media such as
email. Base-64 is most commonly used to add binary attachments to email. Base58 is a text-based
binary-encoding format developed for use in bitcoin and used in many other cryptocurrencies. It
offers a balance between compact representation, readability, and error detection and prevention.
Base58 is a subset of Base64, using the upper- and lowercase letters and numbers, but omitting
some characters that are frequently mistaken for one another and can appear identical when
displayed in certain fonts. Specifically, Base58 is Base64 without the 0 (number zero), O (capital o), l
(lower L), I (capital i), and the symbols "\+" and "/". Or, more simply, it is a set of lower and capital
letters and numbers without the four (0, O, l, I) just mentioned.

Example 3. bitcoin’s Base58 alphabet

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

To add extra security against typos or transcription errors, Base58Check is a Base58 encoding
format, frequently used in bitcoin, which has a built-in error-checking code. The checksum is an
additional four bytes added to the end of the data that is being encoded. The checksum is derived
from the hash of the encoded data and can therefore be used to detect and prevent transcription
and typing errors. When presented with a Base58Check code, the decoding software will calculate
the checksum of the data and compare it to the checksum included in the code. If the two do not
match, that indicates that an error has been introduced and the Base58Check data is invalid. For
example, this prevents a mistyped bitcoin address from being accepted by the wallet software as a
valid destination, an error that would otherwise result in loss of funds.

To convert data (a number) into a Base58Check format, we first add a prefix to the data, called the
"version byte," which serves to easily identify the type of data that is encoded. For example, in the
case of a bitcoin address the prefix is zero (0x00 in hex), whereas the prefix used when encoding a
private key is 128 (0x80 in hex). A list of common version prefixes is shown in Base58Check version
prefix and encoded result examples.

Next, we compute the "double-SHA" checksum, meaning we apply the SHA256 hash-algorithm twice
on the previous result (prefix and data):

checksum = SHA256(SHA256(prefix+data))

From the resulting 32-byte hash (hash-of-a-hash), we take only the first four bytes. These four bytes
serve as the error-checking code, or checksum. The checksum is concatenated (appended) to the
end.

The result is composed of three items: a prefix, the data, and a checksum. This result is encoded
using the Base58 alphabet described previously. Base58Check encoding: a Base58, versioned, and
checksummed format for unambiguously encoding bitcoin data illustrates the Base58Check
encoding process.
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Figure 22. Base58Check encoding: a Base58, versioned, and checksummed format for unambiguously
encoding bitcoin data

In bitcoin, most of the data presented to the user is Base58Check-encoded to make it compact, easy
to read, and easy to detect errors. The version prefix in Base58Check encoding is used to create
easily distinguishable formats, which when encoded in Base58 contain specific characters at the
beginning of the Base58Check-encoded payload. These characters make it easy for humans to
identify the type of data that is encoded and how to use it. This is what differentiates, for example, a
Base58Check-encoded bitcoin address that starts with a 1 from a Base58Check-encoded private key
WIF format that starts with a 5. Some example version prefixes and the resulting Base58 characters
are shown in Base58Check version prefix and encoded result examples.

Table 1. Base58Check version prefix and encoded result examples

Type Version prefix (hex) Base58 result prefix

Bitcoin Address 0x00 1

Pay-to-Script-Hash Address 0x05 3

Bitcoin Testnet Address 0x6F m or n

Private Key WIF 0x80 5, K or L

BIP38 Encrypted Private Key 0x0142 6P
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Type Version prefix (hex) Base58 result prefix

BIP32 Extended Public Key 0x0488B21E xpub

Let’s look at the complete process of creating a bitcoin address, from a private key, to a public key (a
point on the elliptic curve), to a double-hashed address and finally, the Base58Check encoding. The
C++ code in Creating a Base58Check-encoded bitcoin address from a private key shows the
complete step-by-step process, from private key to Base58Check-encoded bitcoin address. The code
example uses the libbitcoin library introduced in Alternative Clients, Libraries, and Toolkits for
some helper functions.
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Example 4. Creating a Base58Check-encoded bitcoin address from a private key

#include <bitcoin/bitcoin.hpp>

int main()
{
    // Private secret key.
    bc::ec_secret secret;
    bool success = bc::decode_base16(secret,
        "038109007313a5807b2eccc082c8c3fbb988a973cacf1a7df9ce725c31b14776");
    assert(success);
    // Get public key.
    bc::ec_point public_key = bc::secret_to_public_key(secret);
    std::cout << "Public key: " << bc::encode_hex(public_key) << std::endl;

    // Create Bitcoin address.
    // Normally you can use:
    //   bc::payment_address payaddr;
    //   bc::set_public_key(payaddr, public_key);
    //   const std::string address = payaddr.encoded();

    // Compute hash of public key for P2PKH address.
    const bc::short_hash hash = bc::bitcoin_short_hash(public_key);

    bc::data_chunk unencoded_address;
    // Reserve 25 bytes
    //   [ version:1  ]
    //   [ hash:20    ]
    //   [ checksum:4 ]
    unencoded_address.reserve(25);
    // Version byte, 0 is normal BTC address (P2PKH).
    unencoded_address.push_back(0);
    // Hash data
    bc::extend_data(unencoded_address, hash);
    // Checksum is computed by hashing data, and adding 4 bytes from hash.
    bc::append_checksum(unencoded_address);
    // Finally we must encode the result in Bitcoin's base58 encoding
    assert(unencoded_address.size() == 25);
    const std::string address = bc::encode_base58(unencoded_address);

    std::cout << "Address: " << address << std::endl;
    return 0;
}

The code uses a predefined private key so that it produces the same bitcoin address every time it is
run, as shown in Compiling and running the addr code.
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Example 5. Compiling and running the addr code

# Compile the addr.cpp code
$ g++ -o addr addr.cpp $(pkg-config --cflags --libs libbitcoin)
# Run the addr executable
$ ./addr
Public key: 0202a406624211f2abbdc68da3df929f938c3399dd79fac1b51b0e4ad1d26a47aa
Address: 1PRTTaJesdNovgne6Ehcdu1fpEdX7913CK

Key Formats

Both private and public keys can be represented in a number of different formats. These
representations all encode the same number, even though they look different. These formats are
primarily used to make it easy for people to read and transcribe keys without introducing errors.

Private key formats

The private key can be represented in a number of different formats, all of which correspond to the
same 256-bit number. Private key representations (encoding formats) shows three common formats
used to represent private keys.

Table 2. Private key representations (encoding formats)

Type Prefix Description

Hex None 64 hexadecimal digits

WIF 5 Base58Check encoding: Base58
with version prefix of 128 and
32-bit checksum

WIF-compressed K or L As above, with added suffix
0x01 before encoding

Example: Same key, different formats shows the private key generated in these three formats.

Table 3. Example: Same key, different formats

Format Private Key

Hex 1e99423a4ed27608a15a2616a2b0e9e52ced330ac
530edcc32c8ffc6a526aedd

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpb
nkeyhfsYB1Jcn

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGm
f6YwgdGWZgawvrtJ

All of these representations are different ways of showing the same number, the same private key.
They look different, but any one format can easily be converted to any other format.
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We use the wif-to-ec command from Bitcoin Explorer (see Libbitcoin and Bitcoin Explorer) to show
that both WIF keys represent the same private key:

$ bx wif-to-ec 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

$ bx wif-to-ec KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd

Decode from Base58Check

The Bitcoin Explorer commands (see Libbitcoin and Bitcoin Explorer) make it easy to write shell
scripts and command-line "pipes" that manipulate bitcoin keys, addresses, and transactions. You
can use Bitcoin Explorer to decode the Base58Check format on the command line.

We use the base58check-decode command to decode the uncompressed key:

$ bx base58check-decode 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn
wrapper
{
    checksum 4286807748
    payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
    version 128
}

The result contains the key as payload, the Wallet Import Format (WIF) version prefix 128, and a
checksum.

Notice that the "payload" of the compressed key is appended with the suffix 01, signalling that the
derived public key is to be compressed.

$ bx base58check-decode KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ
wrapper
{
    checksum 2339607926
    payload 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01
    version 128
}

Encode from hex to Base58Check

To encode into Base58Check (the opposite of the previous command), we use the base58check-
encode command from Bitcoin Explorer (see Libbitcoin and Bitcoin Explorer) and provide the hex
private key, followed by the Wallet Import Format (WIF) version prefix 128:

75



bx base58check-encode 1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd
--version 128
5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2JpbnkeyhfsYB1Jcn

Encode from hex (compressed key) to Base58Check

To encode into Base58Check as a "compressed" private key (see Compressed private keys), we
append the suffix 01 to the hex key and then encode as above:

$ bx base58check-encode
1e99423a4ed27608a15a2616a2b0e9e52ced330ac530edcc32c8ffc6a526aedd01 --version 128
KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGmf6YwgdGWZgawvrtJ

The resulting WIF-compressed format starts with a "K". This denotes that the private key within has
a suffix of "01" and will be used to produce compressed public keys only (see Compressed public
keys).

Public key formats

Public keys are also presented in different ways, most importantly as either compressed or
uncompressed public keys.

As we saw previously, the public key is a point on the elliptic curve consisting of a pair of
coordinates (x,y). It is usually presented with the prefix 04 followed by two 256-bit numbers, one
for the x coordinate of the point, the other for the y coordinate. The prefix 04 is used to distinguish
uncompressed public keys from compressed public keys that begin with a 02 or a 03.

Here’s the public key generated by the private key we created earlier, shown as the coordinates x
and y:

x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A
y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB

Here’s the same public key shown as a 520-bit number (130 hex digits) with the prefix 04 followed
by x and then y coordinates, as 04 x y:

Compressed public keys

Compressed public keys were introduced to bitcoin to reduce the size of transactions and conserve
disk space on nodes that store the bitcoin blockchain database. Most transactions include the public
key, required to validate the owner’s credentials and spend the bitcoin. Each public key requires
520 bits (prefix \+ x \+ y), which when multiplied by several hundred transactions per block, or tens
of thousands of transactions per day, adds a significant amount of data to the blockchain.

As we saw in the section Public Keys, a public key is a point (x,y) on an elliptic curve. Because the
curve expresses a mathematical function, a point on the curve represents a solution to the equation
and, therefore, if we know the x coordinate we can calculate the y coordinate by solving the
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equation y2 mod p = (x3 + 7) mod p. That allows us to store only the x coordinate of the public key
point, omitting the y coordinate and reducing the size of the key and the space required to store it
by 256 bits. An almost 50% reduction in size in every transaction adds up to a lot of data saved over
time!

Whereas uncompressed public keys have a prefix of 04, compressed public keys start with either a
02 or a 03 prefix. Let’s look at why there are two possible prefixes: because the left side of the
equation is y2, that means the solution for y is a square root, which can have a positive or negative
value. Visually, this means that the resulting y coordinate can be above the x-axis or below the x-
axis. As you can see from the graph of the elliptic curve in An elliptic curve, the curve is symmetric,
meaning it is reflected like a mirror by the x-axis. So, while we can omit the y coordinate we have to
store the sign of y (positive or negative), or in other words, we have to remember if it was above or
below the x-axis because each of those options represents a different point and a different public
key. When calculating the elliptic curve in binary arithmetic on the finite field of prime order p, the
y coordinate is either even or odd, which corresponds to the positive/negative sign as explained
earlier. Therefore, to distinguish between the two possible values of y, we store a compressed
public key with the prefix 02 if the y is even, and 03 if it is odd, allowing the software to correctly
deduce the y coordinate from the x coordinate and uncompress the public key to the full
coordinates of the point. Public key compression is illustrated in Public key compression.
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Figure 23. Public key compression

Here’s the same public key generated previously, shown as a compressed public key stored in 264
bits (66 hex digits) with the prefix 03 indicating the y coordinate is odd:

K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A

This compressed public key corresponds to the same private key, meaning that it is generated from
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the same private key. However, it looks different from the uncompressed public key. More
importantly, if we convert this compressed public key to a bitcoin address using the double-hash
function (RIPEMD160(SHA256(K))) it will produce a different bitcoin address. This can be confusing,
because it means that a single private key can produce a public key expressed in two different
formats (compressed and uncompressed) that produce two different bitcoin addresses. However,
the private key is identical for both bitcoin addresses.

Compressed public keys are gradually becoming the default across bitcoin clients, which is having a
significant impact on reducing the size of transactions and therefore the blockchain. However, not
all clients support compressed public keys yet. Newer clients that support compressed public keys
have to account for transactions from older clients that do not support compressed public keys.
This is especially important when a wallet application is importing private keys from another
bitcoin wallet application, because the new wallet needs to scan the blockchain to find transactions
corresponding to these imported keys. Which bitcoin addresses should the bitcoin wallet scan for?
The bitcoin addresses produced by uncompressed public keys, or the bitcoin addresses produced by
compressed public keys? Both are valid bitcoin addresses, and can be signed for by the private key,
but they are different addresses!

To resolve this issue, when private keys are exported from a wallet, the Wallet Import Format that
is used to represent them is implemented differently in newer bitcoin wallets, to indicate that these
private keys have been used to produce compressed public keys and therefore compressed bitcoin
addresses. This allows the importing wallet to distinguish between private keys originating from
older or newer wallets and search the blockchain for transactions with bitcoin addresses
corresponding to the uncompressed, or the compressed, public keys, respectively. Let’s look at how
this works in more detail, in the next section.

Compressed private keys

Ironically, the term "compressed private key" is misleading, because when a private key is exported
as WIF-compressed it is actually one byte longer than an "uncompressed" private key. That is
because it has the added 01 suffix, which signifies it comes from a newer wallet and should only be
used to produce compressed public keys. Private keys are not compressed and cannot be
compressed. The term "compressed private key" really means "private key from which compressed
public keys should be derived," whereas "uncompressed private key" really means "private key
from which uncompressed public keys should be derived." You should only refer to the export
format as "WIF-compressed" or "WIF" and not refer to the private key as "compressed" to avoid
further confusion.

Remember, these formats are not used interchangeably. In a newer wallet that implements
compressed public keys, the private keys will only ever be exported as WIF-compressed (with a K or
L prefix). If the wallet is an older implementation and does not use compressed public keys, the
private keys will only ever be exported as WIF (with a 5 prefix). The goal here is to signal to the
wallet importing these private keys whether it must search the blockchain for compressed or
uncompressed public keys and addresses.

If a bitcoin wallet is able to implement compressed public keys, it will use those in all transactions.
The private keys in the wallet will be used to derive the public key points on the curve, which will
be compressed. The compressed public keys will be used to produce bitcoin addresses and those
will be used in transactions. When exporting private keys from a new wallet that implements
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compressed public keys, the Wallet Import Format is modified, with the addition of a one-byte
suffix 01 to the private key. The resulting Base58Check-encoded private key is called a "Compressed
WIF" and starts with the letter K or L, instead of starting with "5" as is the case with WIF-encoded
(non-compressed) keys from older wallets.

Example: Same key, different formats shows the same key, encoded in WIF and WIF-compressed
formats.

Table 4. Example: Same key, different formats

Format Private Key

Hex 1E99423A4ED27608A15A2616A2B0E9E52CED330
AC530EDCC32C8FFC6A526AEDD

WIF 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpb
nkeyhfsYB1Jcn

Hex-compressed 1E99423A4ED27608A15A2616A2B0E9E52CED330
AC530EDCC32C8FFC6A526AEDD_01_

WIF-compressed KxFC1jmwwCoACiCAWZ3eXa96mBM6tb3TYzGm
f6YwgdGWZgawvrtJ

TIP

"Compressed private keys" is a misnomer! They are not compressed; rather, the WIF-
compressed format signifies that they should only be used to derive compressed
public keys and their corresponding bitcoin addresses. Ironically, a "WIF-compressed"
encoded private key is one byte longer because it has the added 01 suffix to
distinguish it from an "uncompressed" one.

Implementing Keys and Addresses in Python
The most comprehensive bitcoin library in Python is pybitcointools by Vitalik Buterin. In Key and
address generation and formatting with the pybitcointools library, we use the pybitcointools library
(imported as "bitcoin") to generate and display keys and addresses in various formats.

Example 6. Key and address generation and formatting with the pybitcointools library
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import bitcoin

# Generate a random private key
valid_private_key = False
while not valid_private_key:
    private_key = bitcoin.random_key()
    decoded_private_key = bitcoin.decode_privkey(private_key, 'hex')
    valid_private_key =  0 < decoded_private_key < bitcoin.N

print "Private Key (hex) is: ", private_key
print "Private Key (decimal) is: ", decoded_private_key

# Convert private key to WIF format
wif_encoded_private_key = bitcoin.encode_privkey(decoded_private_key, 'wif')
print "Private Key (WIF) is: ", wif_encoded_private_key

# Add suffix "01" to indicate a compressed private key
compressed_private_key = private_key + '01'
print "Private Key Compressed (hex) is: ", compressed_private_key

# Generate a WIF format from the compressed private key (WIF-compressed)
wif_compressed_private_key = bitcoin.encode_privkey(
    bitcoin.decode_privkey(compressed_private_key, 'hex'), 'wif')
print "Private Key (WIF-Compressed) is: ", wif_compressed_private_key

# Multiply the EC generator point G with the private key to get a public key point
public_key = bitcoin.fast_multiply(bitcoin.G, decoded_private_key)
print "Public Key (x,y) coordinates is:", public_key

# Encode as hex, prefix 04
hex_encoded_public_key = bitcoin.encode_pubkey(public_key,'hex')
print "Public Key (hex) is:", hex_encoded_public_key

# Compress public key, adjust prefix depending on whether y is even or odd
(public_key_x, public_key_y) = public_key
if (public_key_y % 2) == 0:
    compressed_prefix = '02'
else:
    compressed_prefix = '03'
hex_compressed_public_key = compressed_prefix + bitcoin.encode(public_key_x, 16)
print "Compressed Public Key (hex) is:", hex_compressed_public_key

# Generate bitcoin address from public key
print "Bitcoin Address (b58check) is:", bitcoin.pubkey_to_address(public_key)

# Generate compressed bitcoin address from compressed public key
print "Compressed Bitcoin Address (b58check) is:", \
    bitcoin.pubkey_to_address(hex_compressed_public_key)
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Running key-to-address-ecc-example.py shows the output from running this code.

Example 7. Running key-to-address-ecc-example.py

A script demonstrating elliptic curve math used for bitcoin keys is another example, using the
Python ECDSA library for the elliptic curve math and without using any specialized bitcoin
libraries.

Example 8. A script demonstrating elliptic curve math used for bitcoin keys

import ecdsa
import os
from ecdsa.util import string_to_number, number_to_string

# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
curve_secp256k1 = ecdsa.ellipticcurve.CurveFp(_p, _a, _b)
generator_secp256k1 = ecdsa.ellipticcurve.Point(curve_secp256k1, _Gx, _Gy, _r)
oid_secp256k1 = (1, 3, 132, 0, 10)
SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1,
oid_secp256k1)
ec_order = _r

curve = curve_secp256k1
generator = generator_secp256k1

def random_secret():
    convert_to_int = lambda array: int("".join(array).encode("hex"), 16)

    # Collect 256 bits of random data from the OS's cryptographically secure
random generator
    byte_array = os.urandom(32)

    return convert_to_int(byte_array)

def get_point_pubkey(point):
    if point.y() & 1:
        key = '03' + '%064x' % point.x()
    else:
        key = '02' + '%064x' % point.x()
    return key.decode('hex')

def get_point_pubkey_uncompressed(point):
    key = '04' + \
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          '%064x' % point.x() + \
          '%064x' % point.y()
    return key.decode('hex')

# Generate a new private key.
secret = random_secret()
print "Secret: ", secret

# Get the public key point.
point = secret * generator
print "EC point:", point

print "BTC public key:", get_point_pubkey(point).encode("hex")

# Given the point (x, y) we can create the object using:
point1 = ecdsa.ellipticcurve.Point(curve, point.x(), point.y(), ec_order)
assert point1 == point

Installing the Python ECDSA library and running the ec_math.py script shows the output produced
by running this script.

NOTE

The example above uses os.urandom, which reflects a cryptographically secure
random number generator (CSRNG) provided by the underlying operating system.
In the case of an UNIX-like operating system such as Linux, it draws from
/dev/urandom; and in the case of Windows, calls CryptGenRandom(). If a suitable
randomness source is not found, NotImplementedError will be raised. While the
random number generator used here is for demonstration purposes, it is not
appropriate for generating production-quality bitcoin keys as it is not implemented
with sufficient security.

Example 9. Installing the Python ECDSA library and running the ec_math.py script

$ # Install Python PIP package manager
$ sudo apt-get install python-pip
$ # Install the Python ECDSA library
$ sudo pip install ecdsa
$ # Run the script
$ python ec-math.py
Secret:
38090835015954358862481132628887443905906204995912378278060168703580660294000
EC point:
(70048853531867179489857750497606966272382583471322935454624595540007269312627,
105262206478686743191060800263479589329920209527285803935736021686045542353380)
BTC public key: 029ade3effb0a67d5c8609850d797366af428f4a0d5194cb221d807770a1522873
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Wallets
Wallets are containers for private keys, usually implemented as structured files or simple
databases. Another method for making keys is deterministic key generation. Here you derive each
new private key, using a one-way hash function from a previous private key, linking them in a
sequence. As long as you can re-create that sequence, you only need the first key (known as a seed
or master key) to generate them all. In this section we will examine the different methods of key
generation and the wallet structures that are built around them.

TIP

Bitcoin wallets contain keys, not coins. Each user has a wallet containing keys. Wallets
are really keychains containing pairs of private/public keys (see Private and Public
Keys). Users sign transactions with the keys, thereby proving they own the transaction
outputs (their coins). The coins are stored on the blockchain in the form of
transaction-ouputs (often noted as vout or txout).

Nondeterministic (Random) Wallets

In the first bitcoin clients, wallets were simply collections of randomly generated private keys. This
type of wallet is called a Type-0 nondeterministic wallet. For example, the Bitcoin Core client
pregenerates 100 random private keys when first started and generates more keys as needed, using
each key only once. This type of wallet is nicknamed "Just a Bunch Of Keys," or JBOK, and such
wallets are being replaced with deterministic wallets because they are cumbersome to manage,
back up, and import. The disadvantage of random keys is that if you generate many of them you
must keep copies of all of them, meaning that the wallet must be backed up frequently. Each key
must be backed up, or the funds it controls are irrevocably lost if the wallet becomes inaccessible.
This conflicts directly with the principle of avoiding address re-use, by using each bitcoin address
for only one transaction. Address re-use reduces privacy by associating multiple transactions and
addresses with each other. A Type-0 nondeterministic wallet is a poor choice of wallet, especially if
you want to avoid address re-use because that means managing many keys, which creates the need
for frequent backups. Although the Bitcoin Core client includes a Type-0 wallet, using this wallet is
discouraged by developers of Bitcoin Core. Type-0 nondeterministic (random) wallet: a collection of
randomly generated keys shows a nondeterministic wallet, containing a loose collection of random
keys.

Deterministic (Seeded) Wallets

Deterministic, or "seeded" wallets are wallets that contain private keys that are all derived from a
common seed, through the use of a one-way hash function. The seed is a randomly generated
number that is combined with other data, such as an index number or "chain code" (see
Hierarchical Deterministic Wallets (BIP0032/BIP0044)) to derive the private keys. In a deterministic
wallet, the seed is sufficient to recover all the derived keys, and therefore a single backup at
creation time is sufficient. The seed is also sufficient for a wallet export or import, allowing for easy
migration of all the user’s keys between different wallet implementations.
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Figure 24. Type-0 nondeterministic (random) wallet: a collection of randomly generated keys

Mnemonic Code Words

Mnemonic codes are English word sequences that represent (encode) a random number used as a
seed to derive a deterministic wallet. The sequence of words is sufficient to re-create the seed and
from there re-create the wallet and all the derived keys. A wallet application that implements
deterministic wallets with mnemonic code will show the user a sequence of 12 to 24 words when
first creating a wallet. That sequence of words is the wallet backup and can be used to recover and
re-create all the keys in the same or any compatible wallet application. Mnemonic code words make
it easier for users to back up wallets because they are easy to read and correctly transcribe, as
compared to a random sequence of numbers.

Mnemonic codes are defined in Bitcoin Improvement Proposal 39 (see [bip0039]), currently in Draft
status. Note that BIP0039 is a draft proposal and not a standard. Specifically, there is a different
standard, with a different set of words, used by the Electrum wallet and predating BIP0039. BIP0039
is used by the Trezor wallet and a few other wallets but is incompatible with Electrum’s
implementation.

BIP0039 defines the creation of a mnemonic code and seed as a follows:

1. Create a random sequence (entropy) of 128 to 256 bits.

2. Create a checksum of the random sequence by taking the first few bits of its SHA256 hash.

3. Add the checksum to the end of the random sequence.

4. Divide the sequence into sections of 11 bits, using those to index a dictionary of 2048 predefined
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words.

5. Produce 12 to 24 words representing the mnemonic code.

Mnemonic codes: entropy and word length shows the relationship between the size of entropy data
and the length of mnemonic codes in words.

Table 5. Mnemonic codes: entropy and word length

Entropy (bits) Checksum (bits) Entropy+checksum Word length

128 4 132 12

160 5 165 15

192 6 198 18

224 7 231 21

256 8 264 24

The mnemonic code represents 128 to 256 bits, which are used to derive a longer (512-bit) seed
through the use of the key-stretching function PBKDF2. The resulting seed is used to create a
deterministic wallet and all of its derived keys.

Tables <a data-type="xref" href="#table_4-6" data-xrefstyle="select: labelnumber">#table_4-6</a>
and <a data-type="xref" href="#table_4-7" data-xrefstyle="select: labelnumber">#table_4-7</a>
show some examples of mnemonic codes and the seeds they produce.

Table 6. 128-bit entropy mnemonic code and resulting seed

Entropy input (128 bits) 0c1e24e5917779d297e14d45f14e1a1a

Mnemonic (12 words) army van defense carry jealous true garbage
claim echo media make crunch

Seed (512 bits) 3338a6d2ee71c7f28eb5b882159634cd46a898463
e9d2d0980f8e80dfbba5b0fa0291e5fb88
8a599b44b93187be6ee3ab5fd3ead7dd646341b2c
db8d08d13bf7

Table 7. 256-bit entropy mnemonic code and resulting seed

Entropy input (256 bits) 2041546864449caff939d32d574753fe684d3c947c
3346713dd8423e74abcf8c

Mnemonic (24 words) cake apple borrow silk endorse fitness top
denial coil riot stay wolf luggage oxygen faint
major edit measure invite love trap field
dilemma oblige

Seed (512 bits) 3972e432e99040f75ebe13a660110c3e29d131a2c8
08c7ee5f1631d0a977fcf473bee22
fce540af281bf7cdeade0dd2c1c795bd02f1e4049e2
05a0158906c343
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Hierarchical Deterministic Wallets (BIP0032/BIP0044)

Deterministic wallets were developed to make it easy to derive many keys from a single "seed." The
most advanced form of deterministic wallets is the hierarchical deterministic wallet or HD wallet
defined by the BIP0032 standard. Hierarchical deterministic wallets contain keys derived in a tree
structure, such that a parent key can derive a sequence of children keys, each of which can derive a
sequence of grandchildren keys, and so on, to an infinite depth. This tree structure is illustrated in
Type-2 hierarchical deterministic wallet: a tree of keys generated from a single seed.

Figure 25. Type-2 hierarchical deterministic wallet: a tree of keys generated from a single seed

TIP
If you are implementing a bitcoin wallet, it should be built as an HD wallet following
the BIP0032 and BIP0044 standards.

HD wallets offer two major advantages over random (nondeterministic) keys. First, the tree
structure can be used to express additional organizational meaning, such as when a specific branch
of subkeys is used to receive incoming payments and a different branch is used to receive change
from outgoing payments. Branches of keys can also be used in a corporate setting, allocating
different branches to departments, subsidiaries, specific functions, or accounting categories.

The second advantage of HD wallets is that users can create a sequence of public keys without
having access to the corresponding private keys. This allows HD wallets to be used on an insecure
server or in a receive-only capacity, issuing a different public key for each transaction. The public
keys do not need to be preloaded or derived in advance, yet the server doesn’t have the private keys
that can spend the funds.
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HD wallet creation from a seed

HD wallets are created from a single root seed, which is a 128-, 256-, or 512-bit random number.
Everything else in the HD wallet is deterministically derived from this root seed, which makes it
possible to re-create the entire HD wallet from that seed in any compatible HD wallet. This makes it
easy to back up, restore, export, and import HD wallets containing thousands or even millions of
keys by simply transferring only the root seed. The root seed is most often represented by a
mnemonic word sequence, as described in the previous section Mnemonic Code Words, to make it
easier for people to transcribe and store it.

The process of creating the master keys and master chain code for an HD wallet is shown in
Creating master keys and chain code from a root seed.

Figure 26. Creating master keys and chain code from a root seed

The root seed is input into the HMAC-SHA512 algorithm and the resulting hash is used to create a
master private key (m) and a master chain code. The master private key (m) then generates a
corresponding master public key (M), using the normal elliptic curve multiplication process m * G
that we saw earlier in this chapter. The chain code is used to introduce entropy in the function that
creates child keys from parent keys, as we will see in the next section.

Private child key derivation

Hierarchical deterministic wallets use a child key derivation (CKD) function to derive children keys
from parent keys.

The child key derivation functions are based on a one-way hash function that combines:

• A parent private or public key (ECDSA uncompressed key)

• A seed called a chain code (256 bits)

• An index number (32 bits)

The chain code is used to introduce seemingly random data to the process, so that the index is not
sufficient to derive other child keys. Thus, having a child key does not make it possible to find its
siblings, unless you also have the chain code. The initial chain code seed (at the root of the tree) is
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made from random data, while subsequent chain codes are derived from each parent chain code.

These three items are combined and hashed to generate children keys, as follows.

The parent public key, chain code, and the index number are combined and hashed with the HMAC-
SHA512 algorithm to produce a 512-bit hash. The resulting hash is split into two halves. The right-
half 256 bits of the hash output become the chain code for the child. The left-half 256 bits of the
hash and the index number are added to the parent private key to produce the child private key. In
Extending a parent private key to create a child private key, we see this illustrated with the index
set to 0 to produce the 0’th (first by index) child of the parent.

Figure 27. Extending a parent private key to create a child private key

Changing the index allows us to extend the parent and create the other children in the sequence,
e.g., Child 0, Child 1, Child 2, etc. Each parent key can have 2 billion children keys.

Repeating the process one level down the tree, each child can in turn become a parent and create
its own children, in an infinite number of generations.

Using derived child keys

Child private keys are indistinguishable from nondeterministic (random) keys. Because the
derivation function is a one-way function, the child key cannot be used to find the parent key. The
child key also cannot be used to find any siblings. If you have the nth child, you cannot find its
siblings, such as the n–1 child or the n+1 child, or any other children that are part of the sequence.
Only the parent key and chain code can derive all the children. Without the child chain code, the
child key cannot be used to derive any grandchildren either. You need both the child private key
and the child chain code to start a new branch and derive grandchildren.

So what can the child private key be used for on its own? It can be used to make a public key and a
bitcoin address. Then, it can be used to sign transactions to spend anything paid to that address.
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TIP

A child private key, the corresponding public key, and the bitcoin address are all
indistinguishable from keys and addresses created randomly. The fact that they are
part of a sequence is not visible, outside of the HD wallet function that created them.
Once created, they operate exactly as "normal" keys.

Extended keys

As we saw earlier, the key derivation function can be used to create children at any level of the
tree, based on the three inputs: a key, a chain code, and the index of the desired child. The two
essential ingredients are the key and chain code, and combined these are called an extended key.
The term "extended key" could also be thought of as "extensible key" because such a key can be
used to derive children.

Extended keys are stored and represented simply as the concatenation of the 256-bit key and 256-
bit chain code into a 512-bit sequence. There are two types of extended keys. An extended private
key is the combination of a private key and chain code and can be used to derive child private keys
(and from them, child public keys). An extended public key is a public key and chain code, which
can be used to create child public keys, as described in Generating a Public Key.

Think of an extended key as the root of a branch in the tree structure of the HD wallet. With the
root of the branch, you can derive the rest of the branch. The extended private key can create a
complete branch, whereas the extended public key can only create a branch of public keys.

TIP
An extended key consists of a private or public key and chain code. An extended key
can create children, generating its own branch in the tree structure. Sharing an
extended key gives access to the entire branch.

Extended keys are encoded using Base58Check, to easily export and import between different
BIP0032-compatible wallets. The Base58Check coding for extended keys uses a special version
number that results in the prefix "xprv" and "xpub" when encoded in Base58 characters, to make
them easily recognizable. Because the extended key is 512 or 513 bits, it is also much longer than
other Base58Check-encoded strings we have seen previously.

Here’s an example of an extended private key, encoded in Base58Check:

xprv9tyUQV64JT5qs3RSTJkXCWKMyUgoQp7F3hA1xzG6ZGu6u6Q9VMNjGr67Lctvy5P8oyaYAL9CAWrUE9i6Go
NMKUga5biW6Hx4tws2six3b9c

Here’s the corresponding extended public key, also encoded in Base58Check:

xpub67xpozcx8pe95XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtjJ2tgypeQbBs2UAR6KECeeMVKZBPLrtJunSD
MstweyLXhRgPxdp14sk9tJPW9

Public child key derivation

As mentioned previously, a very useful characteristic of hierarchical deterministic wallets is the
ability to derive public child keys from public parent keys, without having the private keys. This
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gives us two ways to derive a child public key: either from the child private key, or directly from the
parent public key.

An extended public key can be used, therefore, to derive all of the public keys (and only the public
keys) in that branch of the HD wallet structure.

This shortcut can be used to create very secure public-key-only deployments where a server or
application has a copy of an extended public key and no private keys whatsoever. That kind of
deployment can produce an infinite number of public keys and bitcoin addresses, but cannot spend
any of the money sent to those addresses. Meanwhile, on another, more secure server, the extended
private key can derive all the corresponding private keys to sign transactions and spend the money.

One common application of this solution is to install an extended public key on a web server that
serves an ecommerce application. The web server can use the public key derivation function to
create a new bitcoin address for every transaction (e.g., for a customer shopping cart). The web
server will not have any private keys that would be vulnerable to theft. Without HD wallets, the
only way to do this is to generate thousands of bitcoin addresses on a separate secure server and
then preload them on the ecommerce server. That approach is cumbersome and requires constant
maintenance to ensure that the ecommerce server doesn’t "run out" of keys.

Another common application of this solution is for cold-storage or hardware wallets. In that
scenario, the extended private key can be stored on a paper wallet or hardware device (such as a
Trezor hardware wallet), while the extended public key can be kept online. The user can create
"receive" addresses at will, while the private keys are safely stored offline. To spend the funds, the
user can use the extended private key on an offline signing bitcoin client or sign transactions on the
hardware wallet device (e.g., Trezor). Extending a parent public key to create a child public key
illustrates the mechanism for extending a parent public key to derive child public keys.

Figure 28. Extending a parent public key to create a child public key

Hardened child key derivation

The ability to derive a branch of public keys from an extended public key is very useful, but it
comes with a potential risk. Access to an extended public key does not give access to child private
keys. However, because the extended public key contains the chain code, if a child private key is
known, or somehow leaked, it can be used with the chain code to derive all the other child private
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keys. A single leaked child private key, together with a parent chain code, reveals all the private
keys of all the children. Worse, the child private key together with a parent chain code can be used
to deduce the parent private key.

To counter this risk, HD wallets use an alternative derivation function called hardened derivation,
which "breaks" the relationship between parent public key and child chain code. The hardened
derivation function uses the parent private key to derive the child chain code, instead of the parent
public key. This creates a "firewall" in the parent/child sequence, with a chain code that cannot be
used to compromise a parent or sibling private key. The hardened derivation function looks almost
identical to the normal child private key derivation, except that the parent private key is used as
input to the hash function, instead of the parent public key, as shown in the diagram in Hardened
derivation of a child key; omits the parent public key.

Figure 29. Hardened derivation of a child key; omits the parent public key

When the hardened private derivation function is used, the resulting child private key and chain
code are completely different from what would result from the normal derivation function. The
resulting "branch" of keys can be used to produce extended public keys that are not vulnerable,
because the chain code they contain cannot be exploited to reveal any private keys. Hardened
derivation is therefore used to create a "gap" in the tree above the level where extended public keys
are used.

In simple terms, if you want to use the convenience of an extended public key to derive branches of
public keys, without exposing yourself to the risk of a leaked chain code, you should derive it from
a hardened parent, rather than a normal parent. As a best practice, the level-1 children of the
master keys are always derived through the hardened derivation, to prevent compromise of the
master keys.
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Index numbers for normal and hardened derivation

The index number used in the derivation function is a 32-bit integer. To easily distinguish between
keys derived through the normal derivation function versus keys derived through hardened
derivation, this index number is split into two ranges. Index numbers between 0 and 231–1 (0x0 to
0x7FFFFFFF) are used only for normal derivation. Index numbers between 231 and 232–1
(0x80000000 to 0xFFFFFFFF) are used only for hardened derivation. Therefore, if the index number
is less than 231, that means the child is normal, whereas if the index number is equal or above 231,
the child is hardened.

To make the index number easier to read and display, the index number for hardened children is
displayed starting from zero, but with a prime symbol. The first normal child key is therefore
displayed as 0, whereas the first hardened child (index 0x80000000) is displayed as 0'. In sequence
then, the second hardened key would have index 0x80000001 and would be displayed as 1', and so
on. When you see an HD wallet index i', that means 231+i.

HD wallet key identifier (path)

Keys in an HD wallet are identified using a "path" naming convention, with each level of the tree
separated by a slash (/) character (see HD wallet path examples). Private keys derived from the
master private key start with "m". Public keys derived from the master public key start with "M".
Therefore, the first child private key of the master private key is m/0. The first child public key is
M/0. The second grandchild of the first child is m/0/1, and so on.

The "ancestry" of a key is read from right to left, until you reach the master key from which it was
derived. For example, identifier m/x/y/z describes the key that is the z-th child of key m/x/y, which is
the y-th child of key m/x, which is the x-th child of m.

Table 8. HD wallet path examples

HD path Key described

m/0 The first (0) child private key from the master
private key (m)

m/0/0 The first grandchild private key of the first child
(m/0)

m/0'/0 The first normal grandchild of the first hardened
child (m/0')

m/1/0 The first grandchild private key of the second
child (m/1)

M/23/17/0/0 The first great-great-grandchild public key of the
first great-grandchild of the 18th grandchild of
the 24th child

Navigating the HD wallet tree structure

The HD wallet tree structure offers tremendous flexibility. Each parent extended key can have 4
billion children: 2 billion normal children and 2 billion hardened children. Each of those children
can have another 4 billion children, and so on. The tree can be as deep as you want, with an infinite
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number of generations. With all that flexibility, however, it becomes quite difficult to navigate this
infinite tree. It is especially difficult to transfer HD wallets between implementations, because the
possibilities for internal organization into branches and subbranches are endless.

Two Bitcoin Improvement Proposals (BIPs) offer a solution to this complexity, by creating some
proposed standards for the structure of HD wallet trees. BIP0043 proposes the use of the first
hardened child index as a special identifier that signifies the "purpose" of the tree structure. Based
on BIP0043, an HD wallet should use only one level-1 branch of the tree, with the index number
identifying the structure and namespace of the rest of the tree by defining its purpose. For example,
an HD wallet using only branch m/i'/ is intended to signify a specific purpose and that purpose is
identified by index number "i".

Extending that specification, BIP0044 proposes a multiaccount structure as "purpose" number 44'
under BIP0043. All HD wallets following the BIP0044 structure are identified by the fact that they
only used one branch of the tree: m/44'/.

BIP0044 specifies the structure as consisting of five predefined tree levels:

m / purpose' / coin_type' / account' / change / address_index

The first-level "purpose" is always set to 44'. The second-level "coin_type" specifies the type of
cryptocurrency coin, allowing for multicurrency HD wallets where each currency has its own
subtree under the second level. There are three currencies defined for now: Bitcoin is m/44'/0',
Bitcoin Testnet is m/44'/1'; and Litecoin is m/44'/2'.

The third level of the tree is "account," which allows users to subdivide their wallets into separate
logical subaccounts, for accounting or organizational purposes. For example, an HD wallet might
contain two bitcoin "accounts": m/44'/0'/0' and m/44'/0'/1'. Each account is the root of its own
subtree.

On the fourth level, "change," an HD wallet has two subtrees, one for creating receiving addresses
and one for creating change addresses. Note that whereas the previous levels used hardened
derivation, this level uses normal derivation. This is to allow this level of the tree to export
extended public keys for use in a nonsecured environment. Usable addresses are derived by the HD
wallet as children of the fourth level, making the fifth level of the tree the "address_index." For
example, the third receiving address for bitcoin payments in the primary account would be
M/44'/0'/0'/0/2. BIP0044 HD wallet structure examples shows a few more examples.

Table 9. BIP0044 HD wallet structure examples

HD path Key described

M/44'/0'/0'/0/2 The third receiving public key for the primary
bitcoin account

M/44'/0'/3'/1/14 The fifteenth change-address public key for the
fourth bitcoin account

m/44'/2'/0'/0/1 The second private key in the Litecoin main
account, for signing transactions
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Experimenting with HD wallets using Bitcoin Explorer

Using the Bitcoin Explorer command-line tool introduced in The Bitcoin Client, you can experiment
with generating and extending BIP0032 deterministic keys, as well as displaying them in different
formats:

$ bx seed | bx hd-new > m # create a new master private key from a seed and store
in file "m"
$ cat m # show the master extended private key
xprv9s21ZrQH143K38iQ9Y5p6qoB8C75TE71NfpyQPdfGvzghDt39DHPFpovvtWZaRgY5uPwV7RpEgHs7c
vdgfiSjLjjbuGKGcjRyU7RGGSS8Xa
$ cat m | bx hd-public # generate the M/0 extended public key
xpub67xpozcx8pe95XVuZLHXZeG6XWXHpGq6Qv5cmNfi7cS5mtjJ2tgypeQbBs2UAR6KECeeMVKZBPLrtJ
unSDMstweyLXhRgPxdp14sk9tJPW9
$ cat m | bx hd-private # generate the m/0 extended private key
xprv9tyUQV64JT5qs3RSTJkXCWKMyUgoQp7F3hA1xzG6ZGu6u6Q9VMNjGr67Lctvy5P8oyaYAL9CAWrUE9
i6GoNMKUga5biW6Hx4tws2six3b9c
$ cat m | bx hd-private | bx hd-to-wif # show the private key of m/0 as a WIF
L1pbvV86crAGoDzqmgY85xURkz3c435Z9nirMt52UbnGjYMzKBUN
$ cat m | bx hd-public | bx hd-to-address # show the bitcoin address of M/0
1CHCnCjgMNb6digimckNQ6TBVcTWBAmPHK
$ cat m | bx hd-private | bx hd-private --index 12 --hard | bx hd-private --index
4 # generate m/0/12'/4
xprv9yL8ndfdPVeDWJenF18oiHguRUj8jHmVrqqD97YQHeTcR3LCeh53q5PXPkLsy2kRaqgwoS6YZBLatR
ZRyUeAkRPe1kLR1P6Mn7jUrXFquUt

Advanced Keys and Addresses
In the following sections we will look at advanced forms of keys and addresses, such as encrypted
private keys, script and multisignature addresses, vanity addresses, and paper wallets.

Encrypted Private Keys (BIP0038)

Private keys must remain secret. The need for confidentiality of the private keys is a truism that is
quite difficult to achieve in practice, because it conflicts with the equally important security
objective of availability. Keeping the private key private is much harder when you need to store
backups of the private key to avoid losing it. A private key stored in a wallet that is encrypted by a
password might be secure, but that wallet needs to be backed up. At times, users need to move keys
from one wallet to another—to upgrade or replace the wallet software, for example. Private key
backups might also be stored on paper (see Paper Wallets) or on external storage media, such as a
USB flash drive. But what if the backup itself is stolen or lost? These conflicting security goals led to
the introduction of a portable and convenient standard for encrypting private keys in a way that
can be understood by many different wallets and bitcoin clients, standardized by Bitcoin
Improvement Proposal 38 or BIP0038 (see [bip0038]).

BIP0038 proposes a common standard for encrypting private keys with a passphrase and encoding
them with Base58Check so that they can be stored securely on backup media, transported securely
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between wallets, or kept in any other conditions where the key might be exposed. The standard for
encryption uses the Advanced Encryption Standard (AES), a standard established by the National
Institute of Standards and Technology (NIST) and used broadly in data encryption implementations
for commercial and military applications.

A BIP0038 encryption scheme takes as input a bitcoin private key, usually encoded in the Wallet
Import Format (WIF), as a Base58Check string with a prefix of "5". Additionally, the BIP0038
encryption scheme takes a passphrase—a long password—usually composed of several words or a
complex string of alphanumeric characters. The result of the BIP0038 encryption scheme is a
Base58Check-encoded encrypted private key that begins with the prefix 6P. If you see a key that
starts with 6P, that means it is encrypted and requires a passphrase in order to convert (decrypt) it
back into a WIF-formatted private key (prefix 5) that can be used in any wallet. Many wallet
applications now recognize BIP0038-encrypted private keys and will prompt the user for a
passphrase to decrypt and import the key. Third-party applications, such as the incredibly useful
browser-based Bit Address (Wallet Details tab), can be used to decrypt BIP0038 keys.

The most common use case for BIP0038 encrypted keys is for paper wallets that can be used to back
up private keys on a piece of paper. As long as the user selects a strong passphrase, a paper wallet
with BIP0038 encrypted private keys is incredibly secure and a great way to create offline bitcoin
storage (also known as "cold storage").

Test the encrypted keys in Example of BIP0038 encrypted private key using bitaddress.org to see
how you can get the decrypted key by entering the passphrase.

Table 10. Example of BIP0038 encrypted private key

Private Key (WIF) 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpb
nkeyhfsYB1Jcn

Passphrase MyTestPassphrase

Encrypted Key (BIP0038) 6PRTHL6mWa48xSopbU1cKrVjpKbBZxcLRRCdct
LJ3z5yxE87MobKoXdTsJ

Pay-to-Script Hash (P2SH) and Multi-Sig Addresses

As we know, traditional bitcoin addresses begin with the number “1” and are derived from the
public key, which is derived from the private key. Although anyone can send bitcoin to a “1”
address, that bitcoin can only be spent by presenting the corresponding private key signature and
public key hash.

Bitcoin addresses that begin with the number “3” are pay-to-script hash (P2SH) addresses,
sometimes erroneously called multi-signature or multi-sig addresses. They designate the
beneficiary of a bitcoin transaction as the hash of a script, instead of the owner of a public key. The
feature was introduced in January 2012 with Bitcoin Improvement Proposal 16, or BIP0016 (see
[bip0016]), and is being widely adopted because it provides the opportunity to add functionality to
the address itself. Unlike transactions that "send" funds to traditional “1” bitcoin addresses, also
known as pay-to-public-key-hash (P2PKH), funds sent to “3” addresses require something more
than the presentation of one public key hash and one private key signature as proof of ownership.
The requirements are designated at the time the address is created, within the script, and all inputs
to this address will be encumbered with the same requirements.
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A pay-to-script hash address is created from a transaction script, which defines who can spend a
transaction output (for more detail, see Pay-to-Script-Hash (P2SH)). Encoding a pay-to-script hash
address involves using the same double-hash function as used during creation of a bitcoin address,
only applied on the script instead of the public key:

script hash = RIPEMD160(SHA256(script))

The resulting "script hash" is encoded with Base58Check with a version prefix of 5, which results in
an encoded address starting with a 3. An example of a P2SH address is
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM, which can be derived using the Bitcoin Explorer
commands script-encode, sha256, ripemd160, and base58check-encode (see Libbitcoin and Bitcoin
Explorer) as follows:

$ echo dup hash160 [ 89abcdefabbaabbaabbaabbaabbaabbaabbaabba ] equalverify checksig >
script
$ bx script-encode < script | bx sha256 | bx ripemd160 | bx base58check-encode
--version 5
3F6i6kwkevjR7AsAd4te2YB2zZyASEm1HM

TIP
P2SH is not necessarily the same as a multi-signature standard transaction. A P2SH
address most often represents a multi-signature script, but it might also represent a
script encoding other types of transactions.

Multi-signature addresses and P2SH

Currently, the most common implementation of the P2SH function is the multi-signature address
script. As the name implies, the underlying script requires more than one signature to prove
ownership and therefore spend funds. The bitcoin multi-signature feature is designed to require M
signatures (also known as the “threshold”) from a total of N keys, known as an M-of-N multi-sig,
where M is equal to or less than N. For example, Bob the coffee shop owner from Introduction
could use a multi-signature address requiring 1-of-2 signatures from a key belonging to him and a
key belonging to his spouse, ensuring either of them could sign to spend a transaction output locked
to this address. This would be similar to a “joint account” as implemented in traditional banking
where either spouse can spend with a single signature. Or Gopesh, the web designer paid by Bob to
create a website, might have a 2-of-3 multi-signature address for his business that ensures that no
funds can be spent unless at least two of the business partners sign a transaction.

We will explore how to create transactions that spend funds from P2SH (and multi-signature)
addresses in Transactions.

Vanity Addresses

Vanity addresses are valid bitcoin addresses that contain human-readable messages. For example,
1LoveBPzzD72PUXLzCkYAtGFYmK5vYNR33 is a valid address that contains the letters forming the
word "Love" as the first four Base-58 letters. Vanity addresses require generating and testing
billions of candidate private keys, until one derives a bitcoin address with the desired pattern.
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Although there are some optimizations in the vanity generation algorithm, the process essentially
involves picking a private key at random, deriving the public key, deriving the bitcoin address, and
checking to see if it matches the desired vanity pattern, repeating billions of times until a match is
found.

Once a vanity address matching the desired pattern is found, the private key from which it was
derived can be used by the owner to spend bitcoins in exactly the same way as any other address.
Vanity addresses are no less or more secure than any other address. They depend on the same
Elliptic Curve Cryptography (ECC) and Secure Hash Algorithm (SHA) as any other address. You can
no more easily find the private key of an address starting with a vanity pattern than you can any
other address.

In Introduction, we introduced Eugenia, a children’s charity director operating in the Philippines.
Let’s say that Eugenia is organizing a bitcoin fundraising drive and wants to use a vanity bitcoin
address to publicize the fundraising. Eugenia will create a vanity address that starts with "1Kids" to
promote the children’s charity fundraiser. Let’s see how this vanity address will be created and
what it means for the security of Eugenia’s charity.

Generating vanity addresses

It’s important to realize that a bitcoin address is simply a number represented by symbols in the
Base58 alphabet. The search for a pattern like "1Kids" can be seen as searching for an address in
the range from 1Kids11111111111111111111111111111 to 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz.
There are approximately 5829 (approximately 1.4 * 1051) addresses in that range, all starting with
"1Kids". The range of vanity addresses starting with "1Kids" shows the range of addresses that have
the prefix 1Kids.

Table 11. The range of vanity addresses starting with "1Kids"

From 1Kids11111111111111111111111111111

1Kids11111111111111111111111111112

1Kids11111111111111111111111111113

...

To 1Kidszzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Let’s look at the pattern "1Kids" as a number and see how frequently we might find this pattern in a
bitcoin address (see The frequency of a vanity pattern (1KidsCharity) and average time-to-find on a
desktop PC). An average desktop computer PC, without any specialized hardware, can search
approximately 100,000 keys per second.

Table 12. The frequency of a vanity pattern (1KidsCharity) and average time-to-find on a desktop PC

Length Pattern Frequency Average search time

1 1K 1 in 58 keys < 1 milliseconds

2 1Ki 1 in 3,364 50 milliseconds

3 1Kid 1 in 195,000 < 2 seconds

4 1Kids 1 in 11 million 1 minute
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Length Pattern Frequency Average search time

5 1KidsC 1 in 656 million 1 hour

6 1KidsCh 1 in 38 billion 2 days

7 1KidsCha 1 in 2.2 trillion 3–4 months

8 1KidsChar 1 in 128 trillion 13–18 years

9 1KidsChari 1 in 7 quadrillion 800 years

10 1KidsCharit 1 in 400 quadrillion 46,000 years

11 1KidsCharity 1 in 23 quintillion 2.5 million years

As you can see, Eugenia won’t be creating the vanity address "1KidsCharity" any time soon, even if
she had access to several thousand computers. Each additional character increases the difficulty by
a factor of 58. Patterns with more than seven characters are usually found by specialized hardware,
such as custom-built desktops with multiple graphical processing units (GPUs). These are often
repurposed bitcoin mining "rigs" that are no longer profitable for bitcoin mining but can be used to
find vanity addresses. Vanity searches on GPU systems are many orders of magnitude faster than
on a general-purpose CPU.

Another way to find a vanity address is to outsource the work to a pool of vanity miners, such as
the pool at Vanity Pool. A pool is a service that allows those with GPU hardware to earn bitcoin
searching for vanity addresses for others. For a small payment (0.01 bitcoin or approximately $5 at
the time of this writing), Eugenia can outsource the search for a seven-character pattern vanity
address and get results in a few hours instead of having to run a CPU search for months.

Generating a vanity address is a brute-force exercise: try a random key, check the resulting address
to see if it matches the desired pattern, repeat until successful. Vanity address miner shows an
example of a "vanity miner," a program designed to find vanity addresses, written in C++. The
example uses the libbitcoin library, which we introduced in Alternative Clients, Libraries, and
Toolkits.

Example 10. Vanity address miner

#include <bitcoin/bitcoin.hpp>

// The string we are searching for
const std::string search = "1kid";

// Generate a random secret key. A random 32 bytes.
bc::ec_secret random_secret(std::default_random_engine& engine);
// Extract the Bitcoin address from an EC secret.
std::string bitcoin_address(const bc::ec_secret& secret);
// Case insensitive comparison with the search string.
bool match_found(const std::string& address);

int main()
{
    // random_device on Linux uses "/dev/urandom"
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    // CAUTION: Depending on implementation this RNG may not be secure enough!
    // Do not use vanity keys generated by this example in production
    std::random_device random;
    std::default_random_engine engine(random());

    // Loop continuously...
    while (true)
    {
        // Generate a random secret.
        bc::ec_secret secret = random_secret(engine);
        // Get the address.
        std::string address = bitcoin_address(secret);
        // Does it match our search string? (1kid)
        if (match_found(address))
        {
            // Success!
            std::cout << "Found vanity address! " << address << std::endl;
            std::cout << "Secret: " << bc::encode_hex(secret) << std::endl;
            return 0;
        }
    }
    // Should never reach here!
    return 0;
}

bc::ec_secret random_secret(std::default_random_engine& engine)
{
    // Create new secret...
    bc::ec_secret secret;
    // Iterate through every byte setting a random value...
    for (uint8_t& byte: secret)
        byte = engine() % std::numeric_limits<uint8_t>::max();
    // Return result.
    return secret;
}

std::string bitcoin_address(const bc::ec_secret& secret)
{
    // Convert secret to pubkey...
    bc::ec_point pubkey = bc::secret_to_public_key(secret);
    // Finally create address.
    bc::payment_address payaddr;
    bc::set_public_key(payaddr, pubkey);
    // Return encoded form.
    return payaddr.encoded();
}

bool match_found(const std::string& address)
{
    auto addr_it = address.begin();
    // Loop through the search string comparing it to the lower case
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    // character of the supplied address.
    for (auto it = search.begin(); it != search.end(); ++it, ++addr_it)
        if (*it != std::tolower(*addr_it))
            return false;
    // Reached end of search string, so address matches.
    return true;
}

NOTE

The example above uses std::random_device. Depending on the implementation it
may reflect a cryptographically secure random number generator (CSRNG)
provided by the underlying operating system. In the case of UNIX-like operating
system such as Linux, it draws from /dev/urandom. While the random number
generator used here is for demonstration purposes, it is not appropriate for
generating production-quality bitcoin keys as it is not implemented with sufficient
security.

The example code must be compiled using a C compiler and linked against the libbitcoin library
(which must be first installed on that system). To run the example, run the vanity-miner++
executable with no parameters (see Compiling and running the vanity-miner example) and it will
attempt to find a vanity address starting with "1kid".

Example 11. Compiling and running the vanity-miner example

$ # Compile the code with g++
$ g++ -o vanity-miner vanity-miner.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the example
$ ./vanity-miner
Found vanity address! 1KiDzkG4MxmovZryZRj8tK81oQRhbZ46YT
Secret: 57cc268a05f83a23ac9d930bc8565bac4e277055f4794cbd1a39e5e71c038f3f
$ # Run it again for a different result
$ ./vanity-miner
Found vanity address! 1Kidxr3wsmMzzouwXibKfwTYs5Pau8TUFn
Secret: 7f65bbbbe6d8caae74a0c6a0d2d7b5c6663d71b60337299a1a2cf34c04b2a623
# Use "time" to see how long it takes to find a result
$ time ./vanity-miner
Found vanity address! 1KidPWhKgGRQWD5PP5TAnGfDyfWp5yceXM
Secret: 2a802e7a53d8aa237cd059377b616d2bfcfa4b0140bc85fa008f2d3d4b225349

real    0m8.868s
user    0m8.828s
sys 0m0.035s

The example code will take a few seconds to find a match for the three-character pattern "kid", as
we can see when we use the time Unix command to measure the execution time. Change the search
pattern in the source code and see how much longer it takes for four- or five-character patterns!
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Vanity address security

Vanity addresses can be used to enhance and to defeat security measures; they are truly a double-
edged sword. Used to improve security, a distinctive address makes it harder for adversaries to
substitute their own address and fool your customers into paying them instead of you.
Unfortunately, vanity addresses also make it possible for anyone to create an address that resembles
any random address, or even another vanity address, thereby fooling your customers.

Eugenia could advertise a randomly generated address (e.g.,
1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy) to which people can send their donations. Or, she
could generate a vanity address that starts with 1Kids, to make it more distinctive.

In both cases, one of the risks of using a single fixed address (rather than a separate dynamic
address per donor) is that a thief might be able to infiltrate your website and replace it with his
own address, thereby diverting donations to himself. If you have advertised your donation address
in a number of different places, your users may visually inspect the address before making a
payment to ensure it is the same one they saw on your website, on your email, and on your flyer. In
the case of a random address like 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy, the average user
will perhaps inspect the first few characters "1J7mdg" and be satisfied that the address matches.
Using a vanity address generator, someone with the intent to steal by substituting a similar-looking
address can quickly generate addresses that match the first few characters, as shown in Generating
vanity addresses to match a random address.

Table 13. Generating vanity addresses to match a random address

Original Random Address 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

Vanity (4 character match) 1J7md1QqU4LpctBetHS2ZoyLV5d6dShhEy

Vanity (5 character match) 1J7mdgYqyNd4ya3UEcq31Q7sqRMXw2XZ6n

Vanity (6 character match) 1J7mdg5WxGENmwyJP9xuGhG5KRzu99BBCX

So does a vanity address increase security? If Eugenia generates the vanity address
1Kids33q44erFfpeXrmDSz7zEqG2FesZEN, users are likely to look at the vanity pattern word
<em>and a few characters beyond</em>, for example noticing the "1Kids33" part of the address.
That would force an attacker to generate a vanity address matching at least six characters (two
more), expending an effort that is 3,364 times (58 &#x00D7; 58) higher than the effort Eugenia
expended for her four-character vanity. Essentially, the effort Eugenia expends (or pays a vanity
pool for) "pushes" the attacker into having to produce a longer pattern vanity. If Eugenia pays a
pool to generate an 8-character vanity address, the attacker would be pushed into the realm of 10
characters, which is infeasible on a personal computer and expensive even with a custom vanity-
mining rig or vanity pool. What is affordable for Eugenia becomes unaffordable for the attacker,
especially if the potential reward of fraud is not high enough to cover the cost of the vanity address
generation.<a name="__indexterm-522" type="indexterm">�</a><a name="__indexterm-523"
type="indexterm">�</a>

Paper Wallets

Paper wallets are bitcoin private keys printed on paper. Often the paper wallet also includes the
corresponding bitcoin address for convenience, but this is not necessary because it can be derived
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from the private key. Paper wallets are a very effective way to create backups or offline bitcoin
storage, also known as "cold storage." As a backup mechanism, a paper wallet can provide security
against the loss of key due to a computer mishap such as a hard drive failure, theft, or accidental
deletion. As a "cold storage" mechanism, if the paper wallet keys are generated offline and never
stored on a computer system, they are much more secure against hackers, key-loggers, and other
online computer threats.

Paper wallets come in many shapes, sizes, and designs, but at a very basic level are just a key and
an address printed on paper. Simplest form of a paper wallet—a printout of the bitcoin address and
private key. shows the simplest form of a paper wallet.

Table 14. Simplest form of a paper wallet—a printout of the bitcoin address and private key.

Public Address Private Key (WIF)

1424C2F4bC9JidNjjTUZCbUxv6Sa1Mt62x 5J3mBbAH58CpQ3Y5RNJpUKPE62SQ5tfcvU2Jpb
nkeyhfsYB1Jcn

Paper wallets can be generated easily using a tool such as the client-side JavaScript generator at
bitaddress.org. This page contains all the code necessary to generate keys and paper wallets, even
while completely disconnected from the Internet. To use it, save the HTML page on your local drive
or on an external USB flash drive. Disconnect from the Internet and open the file in a browser.
Even better, boot your computer using a pristine operating system, such as a CD-ROM bootable
Linux OS. Any keys generated with this tool while offline can be printed on a local printer over a
USB cable (not wirelessly), thereby creating paper wallets whose keys exist only on the paper and
have never been stored on any online system. Put these paper wallets in a fireproof safe and "send"
bitcoin to their bitcoin address, to implement a simple yet highly effective "cold storage" solution.
An example of a simple paper wallet from bitaddress.org shows a paper wallet generated from the
bitaddress.org site.

Figure 30. An example of a simple paper wallet from bitaddress.org

The disadvantage of the simple paper wallet system is that the printed keys are vulnerable to theft.
A thief who is able to gain access to the paper can either steal it or photograph the keys and take
control of the bitcoins locked with those keys. A more sophisticated paper wallet storage system
uses BIP0038 encrypted private keys. The keys printed on the paper wallet are protected by a
passphrase that the owner has memorized. Without the passphrase, the encrypted keys are useless.
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Yet, they still are superior to a passphrase-protected wallet because the keys have never been
online and must be physically retrieved from a safe or other physically secured storage. An
example of an encrypted paper wallet from bitaddress.org. The passphrase is "test." shows a paper
wallet with an encrypted private key (BIP0038) created on the bitaddress.org site.

Figure 31. An example of an encrypted paper wallet from bitaddress.org. The passphrase is "test."

WARNING

Although you can deposit funds into a paper wallet several times, you should
withdraw all funds only once, spending everything. This is because in the
process of unlocking and spending funds some wallets might generate a
change address if you spend less than the whole amount. Additionally, if the
computer you use to sign the transaction is compromised, you risk exposing
the private key. By spending the entire balance of a paper wallet only once, you
reduce the risk of key compromise. If you need only a small amount, send any
remaining funds to a new paper wallet in the same transaction.

Paper wallets come in many designs and sizes, with many different features. Some are intended to
be given as gifts and have seasonal themes, such as Christmas and New Year&#8217;s themes.
Others are designed for storage in a bank vault or safe with the private key hidden in some way,
either with opaque scratch-off stickers, or folded and sealed with tamper-proof adhesive foil.
Figures <a data-type="xref" href="#paper_wallet_bpw" data-xrefstyle="select:
labelnumber">#paper_wallet_bpw</a> through <a data-type="xref" href="#paper_wallet_spw" data-
xrefstyle="select: labelnumber">#paper_wallet_spw</a> show various examples of paper wallets
with security and backup features.

Figure 32. An example of a paper wallet from bitcoinpaperwallet.com with the private key on a folding flap.
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Figure 33. The bitcoinpaperwallet.com paper wallet with the private key concealed.

Other designs feature additional copies of the key and address, in the form of detachable stubs
similar to ticket stubs, allowing you to store multiple copies to protect against fire, flood, or other
natural disasters.

Figure 34. An example of a paper wallet with additional copies of the keys on a backup "stub."

Transactions

Introduction
Transactions are the most important part of the bitcoin system. Everything else in bitcoin is
designed to ensure that transactions can be created, propagated on the network, validated, and
finally added to the global ledger of transactions (the blockchain). Transactions are data structures
that encode the transfer of value between participants in the bitcoin system. Each transaction is a
public entry in bitcoin’s blockchain, the global double-entry bookkeeping ledger.

In this chapter we will examine all the various forms of transactions, what they contain, how to
create them, how they are verified, and how they become part of the permanent record of all
transactions.

Transaction Lifecycle
A transaction’s lifecycle starts with the transaction’s creation, also known as origination. The
transaction is then signed with one or more signatures indicating the authorization to spend the
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funds referenced by the transaction. The transaction is then broadcast on the bitcoin network,
where each network node (participant) validates and propagates the transaction until it reaches
(almost) every node in the network. Finally, the transaction is verified by a mining node and
included in a block of transactions that is recorded on the blockchain.

Once recorded on the blockchain and confirmed by sufficient subsequent blocks (confirmations),
the transaction is a permanent part of the bitcoin ledger and is accepted as valid by all participants.
The funds allocated to a new owner by the transaction can then be spent in a new transaction,
extending the chain of ownership and beginning the lifecycle of a transaction again.

Creating Transactions

In some ways it helps to think of a transaction in the same way as a paper check. Like a check, a
transaction is an instrument that expresses the intent to transfer money and is not visible to the
financial system until it is submitted for execution. Like a check, the originator of the transaction
does not have to be the one signing the transaction.

Transactions can be created online or offline by anyone, even if the person creating the transaction
is not an authorized signer on the account. For example, an accounts payable clerk might process
payable checks for signature by the CEO. Similarly, an accounts payable clerk can create bitcoin
transactions and then have the CEO apply digital signatures to make them valid. Whereas a check
references a specific account as the source of the funds, a bitcoin transaction references a specific
previous transaction as its source, rather than an account.

Once a transaction has been created, it is signed by the owner (or owners) of the source funds. If it
is properly formed and signed, the signed transaction is now valid and contains all the information
needed to execute the transfer of funds. Finally, the valid transaction has to reach the bitcoin
network so that it can be propagated until it reaches a miner for inclusion in the public ledger (the
blockchain).

Broadcasting Transactions to the Bitcoin Network

First, a transaction needs to be delivered to the bitcoin network so that it can be propagated and
included in the blockchain. In essence, a bitcoin transaction is just 300 to 400 bytes of data and has
to reach any one of tens of thousands of bitcoin nodes. The senders do not need to trust the nodes
they use to broadcast the transaction, as long as they use more than one to ensure that it
propagates. The nodes don’t need to trust the sender or establish the sender’s "identity." Because
the transaction is signed and contains no confidential information, private keys, or credentials, it
can be publicly broadcast using any underlying network transport that is convenient. Unlike credit
card transactions, for example, which contain sensitive information and can only be transmitted on
encrypted networks, a bitcoin transaction can be sent over any network. As long as the transaction
can reach a bitcoin node that will propagate it into the bitcoin network, it doesn’t matter how it is
transported to the first node.

Bitcoin transactions can therefore be transmitted to the bitcoin network over insecure networks
such as WiFi, Bluetooth, NFC, Chirp, barcodes, or by copying and pasting into a web form. In
extreme cases, a bitcoin transaction could be transmitted over packet radio, satellite relay, or
shortwave using burst transmission, spread spectrum, or frequency hopping to evade detection and
jamming. A bitcoin transaction could even be encoded as smileys (emoticons) and posted in a
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public forum or sent as a text message or Skype chat message. Bitcoin has turned money into a data
structure, making it virtually impossible to stop anyone from creating and executing a bitcoin
transaction.

Propagating Transactions on the Bitcoin Network

Once a bitcoin transaction is sent to any node connected to the bitcoin network, the transaction will
be validated by that node. If valid, that node will propagate it to the other nodes to which it is
connected, and a success message will be returned synchronously to the originator. If the
transaction is invalid, the node will reject it and synchronously return a rejection message to the
originator.

The bitcoin network is a peer-to-peer network, meaning that each bitcoin node is connected to a
few other bitcoin nodes that it discovers during startup through the peer-to-peer protocol. The
entire network forms a loosely connected mesh without a fixed topology or any structure, making
all nodes equal peers. Messages, including transactions and blocks, are propagated from each node
to all the peers to which it is connected, a process called "flooding." A new validated transaction
injected into any node on the network will be sent to all of the nodes connected to it (neighbors),
each of which will send the transaction to all its neighbors, and so on. In this way, within a few
seconds a valid transaction will propagate in an exponentially expanding ripple across the network
until all nodes in the network have received it.

The bitcoin network is designed to propagate transactions and blocks to all nodes in an efficient
and resilient manner that is resistant to attacks. To prevent spamming, denial-of-service attacks, or
other nuisance attacks against the bitcoin system, every node independently validates every
transaction before propagating it further. A malformed transaction will not get beyond one node.
The rules by which transactions are validated are explained in more detail in Independent
Verification of Transactions.

Transaction Structure
A transaction is a data structure that encodes a transfer of value from a source of funds, called an
input, to a destination, called an output. Transaction inputs and outputs are not related to accounts
or identities. Instead, you should think of them as bitcoin amounts—chunks of bitcoin—being
locked with a specific secret that only the owner, or person who knows the secret, can unlock. A
transaction contains a number of fields, as shown in The structure of a transaction.

Table 15. The structure of a transaction

Size Field Description

4 bytes Version Specifies which rules this
transaction follows

1–9 bytes (VarInt) Input Counter How many inputs are included

Variable Inputs One or more transaction inputs

1–9 bytes (VarInt) Output Counter How many outputs are included

107



Size Field Description

Variable Outputs One or more transaction
outputs

4 bytes Locktime A Unix timestamp or block
number

Transaction Locktime

Locktime, also known as nLockTime from the variable name used in the reference client,
defines the earliest time that a transaction is valid and can be relayed on the network or
added to the blockchain. It is set to zero in most transactions to indicate immediate
propagation and execution. If locktime is nonzero and below 500 million, it is interpreted as a
block height, meaning the transaction is not valid and is not relayed or included in the
blockchain prior to the specified block height. If it is above 500 million, it is interpreted as a
Unix Epoch timestamp (seconds since Jan-1-1970) and the transaction is not valid prior to the
specified time. Transactions with locktime specifying a future block or time must be held by
the originating system and transmitted to the bitcoin network only after they become valid.
The use of locktime is equivalent to postdating a paper check.

Transaction Outputs and Inputs
The fundamental building block of a bitcoin transaction is an unspent transaction output, or UTXO.
UTXO are indivisible chunks of bitcoin currency locked to a specific owner, recorded on the
blockchain, and recognized as currency units by the entire network. The bitcoin network tracks all
available (unspent) UTXO currently numbering in the millions. Whenever a user receives bitcoin,
that amount is recorded within the blockchain as a UTXO. Thus, a user’s bitcoin might be scattered
as UTXO amongst hundreds of transactions and hundreds of blocks. In effect, there is no such thing
as a stored balance of a bitcoin address or account; there are only scattered UTXO, locked to specific
owners. The concept of a user’s bitcoin balance is a derived construct created by the wallet
application. The wallet calculates the user’s balance by scanning the blockchain and aggregating all
UTXO belonging to that user.

TIP
There are no accounts or balances in bitcoin; there are only unspent transaction
outputs (UTXO) scattered in the blockchain.

A UTXO can have an arbitrary value denominated as a multiple of satoshis. Just like dollars can be
divided down to two decimal places as cents, bitcoins can be divided down to eight decimal places
as satoshis. Although UTXO can be any arbitrary value, once created it is indivisible just like a coin
that cannot be cut in half. If a UTXO is larger than the desired value of a transaction, it must still be
consumed in its entirety and change must be generated in the transaction. In other words, if you
have a 20 bitcoin UTXO and want to pay 1 bitcoin, your transaction must consume the entire 20
bitcoin UTXO and produce two outputs: one paying 1 bitcoin to your desired recipient and another
paying 19 bitcoin in change back to your wallet. As a result, most bitcoin transactions will generate
change.
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Imagine a shopper buying a $1.50 beverage, reaching into her wallet and trying to find a
combination of coins and bank notes to cover the $1.50 cost. The shopper will choose exact change
if available (a dollar bill and two quarters), or a combination of smaller denominations (six
quarters), or if necessary, a larger unit such as a five dollar bank note. If she hands too much
money, say $5, to the shop owner, she will expect $3.50 change, which she will return to her wallet
and have available for future transactions.

Similarly, a bitcoin transaction must be created from a user’s UTXO in whatever denominations
that user has available. Users cannot cut a UTXO in half any more than they can cut a dollar bill in
half and use it as currency. The user’s wallet application will typically select from the user’s
available UTXO various units to compose an amount greater than or equal to the desired
transaction amount.

As with real life, the bitcoin application can use several strategies to satisfy the purchase amount:
combining several smaller units, finding exact change, or using a single unit larger than the
transaction value and making change. All of this complex assembly of spendable UTXO is done by
the user’s wallet automatically and is invisible to users. It is only relevant if you are
programmatically constructing raw transactions from UTXO.

The UTXO consumed by a transaction are called transaction inputs, and the UTXO created by a
transaction are called transaction outputs. This way, chunks of bitcoin value move forward from
owner to owner in a chain of transactions consuming and creating UTXO. Transactions consume
UTXO by unlocking it with the signature of the current owner and create UTXO by locking it to the
bitcoin address of the new owner.

The exception to the output and input chain is a special type of transaction called the coinbase
transaction, which is the first transaction in each block. This transaction is placed there by the
"winning" miner and creates brand-new bitcoin payable to that miner as a reward for mining. This
is how bitcoin’s money supply is created during the mining process, as we will see in Mining and
Consensus.

TIP
What comes first? Inputs or outputs, the chicken or the egg? Strictly speaking, outputs
come first because coinbase transactions, which generate new bitcoin, have no inputs
and create outputs from nothing.

Transaction Outputs

Every bitcoin transaction creates outputs, which are recorded on the bitcoin ledger. Almost all of
these outputs, with one exception (see Data Output (OP_RETURN)) create spendable chunks of
bitcoin called unspent transaction outputs or UTXO, which are then recognized by the whole
network and available for the owner to spend in a future transaction. Sending someone bitcoin is
creating an unspent transaction output (UTXO) registered to their address and available for them to
spend.

UTXO are tracked by every full-node bitcoin client as a data set called the UTXO set or UTXO pool,
held in a database. New transactions consume (spend) one or more of these outputs from the UTXO
set.

Transaction outputs consist of two parts:
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• An amount of bitcoin, denominated in satoshis, the smallest bitcoin unit

• A locking script, also known as an "encumbrance" that "locks" this amount by specifying the
conditions that must be met to spend the output

The transaction scripting language, used in the locking script mentioned previously, is discussed in
detail in Transaction Scripts and Script Language. The structure of a transaction output shows the
structure of a transaction output.

Table 16. The structure of a transaction output

Size Field Description

8 bytes Amount Bitcoin value in satoshis (10-8

bitcoin)

1-9 bytes (VarInt) Locking-Script Size Locking-Script length in bytes,
to follow

Variable Locking-Script A script defining the conditions
needed to spend the output

In A script that calls the blockchain.info API to find the UTXO related to an address, we use the
blockchain.info API to find the unspent outputs (UTXO) of a specific address.
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Example 12. A script that calls the blockchain.info API to find the UTXO related to an address

# get unspent outputs from blockchain API

import json
import requests

# example address
address = '1Dorian4RoXcnBv9hnQ4Y2C1an6NJ4UrjX'

# The API URL is https://blockchain.info/unspent?active=<address>
# It returns a JSON object with a list "unspent_outputs", containing UTXO, like
this:
#{  "unspent_outputs":[
#   {
#
"tx_hash":"ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167",
#     "tx_index":51919767,
#     "tx_output_n": 1,
#     "script":"76a9148c7e252f8d64b0b6e313985915110fcfefcf4a2d88ac",
#     "value": 8000000,
#     "value_hex": "7a1200",
#     "confirmations":28691
#   },
# ...
#]}

resp = requests.get('https://blockchain.info/unspent?active=%s' % address)
utxo_set = json.loads(resp.text)["unspent_outputs"]

for utxo in utxo_set:
    print "%s:%d - %ld Satoshis" % (utxo['tx_hash'], utxo['tx_output_n'],
utxo['value'])

Running the script, we see a list of transaction IDs, a colon, the index number of the specific
unspent transaction output (UTXO), and the value of that UTXO in satoshis. The locking script is not
shown in the output in Running the get-utxo.py script.
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Example 13. Running the get-utxo.py script

$ python get-utxo.py
ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167:1 - 8000000
Satoshis
6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf:0 - 16050000
Satoshis
74d788804e2aae10891d72753d1520da1206e6f4f20481cc1555b7f2cb44aca0:0 - 5000000
Satoshis
b2affea89ff82557c60d635a2a3137b8f88f12ecec85082f7d0a1f82ee203ac4:0 - 10000000
Satoshis
...

Spending conditions (encumbrances)

Transaction outputs associate a specific amount (in satoshis) to a specific encumbrance or locking
script that defines the condition that must be met to spend that amount. In most cases, the locking
script will lock the output to a specific bitcoin address, thereby transferring ownership of that
amount to the new owner. When Alice paid Bob’s Cafe for a cup of coffee, her transaction created a
0.015 bitcoin output encumbered or locked to the cafe’s bitcoin address. That 0.015 bitcoin output
was recorded on the blockchain and became part of the Unspent Transaction Output set, meaning it
showed in Bob’s wallet as part of the available balance. When Bob chooses to spend that amount,
his transaction will release the encumbrance, unlocking the output by providing an unlocking
script containing a signature from Bob’s private key.

Transaction Inputs

In simple terms, transaction inputs are pointers to UTXO. They point to a specific UTXO by
reference to the transaction hash and sequence number where the UTXO is recorded in the
blockchain. To spend UTXO, a transaction input also includes unlocking scripts that satisfy the
spending conditions set by the UTXO. The unlocking script is usually a signature proving ownership
of the bitcoin address that is in the locking script.

When users make a payment, their wallet constructs a transaction by selecting from the available
UTXO. For example, to make a 0.015 bitcoin payment, the wallet app may select a 0.01 UTXO and a
0.005 UTXO, using them both to add up to the desired payment amount.

In A script for calculating how much total bitcoin will be issued, we show the use of a "greedy"
algorithm to select from available UTXO in order to make a specific payment amount. In the
example, the available UTXO are provided as a constant array, but in reality, the available UTXO
would be retrieved with an RPC call to Bitcoin Core, or to a third-party API as shown in A script that
calls the blockchain.info API to find the UTXO related to an address.

Example 14. A script for calculating how much total bitcoin will be issued

# Selects outputs from a UTXO list using a greedy algorithm.
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from sys import argv

class OutputInfo:

    def __init__(self, tx_hash, tx_index, value):
        self.tx_hash = tx_hash
        self.tx_index = tx_index
        self.value = value

    def __repr__(self):
        return "<%s:%s with %s Satoshis>" % (self.tx_hash, self.tx_index,
                                             self.value)

# Select optimal outputs for a send from unspent outputs list.
# Returns output list and remaining change to be sent to
# a change address.
def select_outputs_greedy(unspent, min_value):
    # Fail if empty.
    if not unspent:
        return None
    # Partition into 2 lists.
    lessers = [utxo for utxo in unspent if utxo.value < min_value]
    greaters = [utxo for utxo in unspent if utxo.value >= min_value]
    key_func = lambda utxo: utxo.value
    if greaters:
        # Not-empty. Find the smallest greater.
        min_greater = min(greaters)
        change = min_greater.value - min_value
        return [min_greater], change
    # Not found in greaters. Try several lessers instead.
    # Rearrange them from biggest to smallest. We want to use the least
    # amount of inputs as possible.
    lessers.sort(key=key_func, reverse=True)
    result = []
    accum = 0
    for utxo in lessers:
        result.append(utxo)
        accum += utxo.value
        if accum >= min_value:
            change = accum - min_value
            return result, "Change: %d Satoshis" % change
    # No results found.
    return None, 0

def main():
    unspent = [
 
OutputInfo("ebadfaa92f1fd29e2fe296eda702c48bd11ffd52313e986e99ddad9084062167", 1,
8000000),
 
OutputInfo("6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf", 0,
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16050000),
 
OutputInfo("b2affea89ff82557c60d635a2a3137b8f88f12ecec85082f7d0a1f82ee203ac4", 0,
10000000),
 
OutputInfo("7dbc497969c7475e45d952c4a872e213fb15d45e5cd3473c386a71a1b0c136a1", 0,
25000000),
 
OutputInfo("55ea01bd7e9afd3d3ab9790199e777d62a0709cf0725e80a7350fdb22d7b8ec6", 17,
5470541),
 
OutputInfo("12b6a7934c1df821945ee9ee3b3326d07ca7a65fd6416ea44ce8c3db0c078c64", 0,
10000000),
 
OutputInfo("7f42eda67921ee92eae5f79bd37c68c9cb859b899ce70dba68c48338857b7818", 0,
16100000),
    ]

    if len(argv) > 1:
        target = long(argv[1])
    else:
        target = 55000000

    print "For transaction amount %d Satoshis (%f bitcoin) use: " % (target,
target/10.0**8)
    print select_outputs_greedy(unspent, target)

if __name__ == "__main__":
    main()

If we run the select-utxo.py script without a parameter, it will attempt to construct a set of UTXO
(and change) for a payment of 55,000,000 satoshis (0.55 bitcoin). If you provide a target payment
amount as a parameter, the script will select UTXO to make that target payment amount. In
Running the select-utxo.py script, we run the script trying to make a payment of 0.5 bitcoin or
50,000,000 satoshis.

Example 15. Running the select-utxo.py script

$ python select-utxo.py 50000000
For transaction amount 50000000 Satoshis (0.500000 bitcoin) use:
([<7dbc497969c7475e45d952c4a872e213fb15d45e5cd3473c386a71a1b0c136a1:0 with
25000000 Satoshis>,
<7f42eda67921ee92eae5f79bd37c68c9cb859b899ce70dba68c48338857b7818:0 with 16100000
Satoshis>, <6596fd070679de96e405d52b51b8e1d644029108ec4cbfe451454486796a1ecf:0
with 16050000 Satoshis>], 'Change: 7150000 Satoshis')

Once the UTXO is selected, the wallet then produces unlocking scripts containing signatures for
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each of the UTXO, thereby making them spendable by satisfying their locking script conditions. The
wallet adds these UTXO references and unlocking scripts as inputs to the transaction. The structure
of a transaction input shows the structure of a transaction input.

Table 17. The structure of a transaction input

Size Field Description

32 bytes Transaction Hash Pointer to the transaction
containing the UTXO to be spent

4 bytes Output Index The index number of the UTXO
to be spent; first one is 0

1-9 bytes (VarInt) Unlocking-Script Size Unlocking-Script length in
bytes, to follow

Variable Unlocking-Script A script that fulfills the
conditions of the UTXO locking
script.

4 bytes Sequence Number Currently disabled Tx-
replacement feature, set to
0xFFFFFFFF

NOTE

The sequence number is used to override a transaction prior to the expiration of the
transaction locktime, which is a feature that is currently disabled in bitcoin. Most
transactions set this value to the maximum integer value (0xFFFFFFFF) and it is
ignored by the bitcoin network. If the transaction has a nonzero locktime, at least
one of its inputs must have a sequence number below 0xFFFFFFFF in order to
enable locktime.

Transaction Fees

Most transactions include transaction fees, which compensate the bitcoin miners for securing the
network. Mining and the fees and rewards collected by miners are discussed in more detail in
Mining and Consensus. This section examines how transaction fees are included in a typical
transaction. Most wallets calculate and include transaction fees automatically. However, if you are
constructing transactions programmatically, or using a command-line interface, you must manually
account for and include these fees.

Transaction fees serve as an incentive to include (mine) a transaction into the next block and also
as a disincentive against "spam" transactions or any kind of abuse of the system, by imposing a
small cost on every transaction. Transaction fees are collected by the miner who mines the block
that records the transaction on the blockchain.

Transaction fees are calculated based on the size of the transaction in kilobytes, not the value of the
transaction in bitcoin. Overall, transaction fees are set based on market forces within the bitcoin
network. Miners prioritize transactions based on many different criteria, including fees, and might
even process transactions for free under certain circumstances. Transaction fees affect the
processing priority, meaning that a transaction with sufficient fees is likely to be included in the
next-most–mined block, whereas a transaction with insufficient or no fees might be delayed,
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processed on a best-effort basis after a few blocks, or not processed at all. Transaction fees are not
mandatory, and transactions without fees might be processed eventually; however, including
transaction fees encourages priority processing.

Over time, the way transaction fees are calculated and the effect they have on transaction
prioritization has been evolving. At first, transaction fees were fixed and constant across the
network. Gradually, the fee structure has been relaxed so that it may be influenced by market
forces, based on network capacity and transaction volume. The current minimum transaction fee is
fixed at 0.0001 bitcoin or a tenth of a milli-bitcoin per kilobyte, recently decreased from one milli-
bitcoin. Most transactions are less than one kilobyte; however, those with multiple inputs or
outputs can be larger. In future revisions of the bitcoin protocol, it is expected that wallet
applications will use statistical analysis to calculate the most appropriate fee to attach to a
transaction based on the average fees of recent transactions.

The current algorithm used by miners to prioritize transactions for inclusion in a block based on
their fees is examined in detail in Mining and Consensus.

Adding Fees to Transactions

The data structure of transactions does not have a field for fees. Instead, fees are implied as the
difference between the sum of inputs and the sum of outputs. Any excess amount that remains
after all outputs have been deducted from all inputs is the fee that is collected by the miners.

Transaction fees are implied, as the excess of inputs minus outputs:

Fees = Sum(Inputs) – Sum(Outputs)

This is a somewhat confusing element of transactions and an important point to understand,
because if you are constructing your own transactions you must ensure you do not inadvertently
include a very large fee by underspending the inputs. That means that you must account for all
inputs, if necessary by creating change, or you will end up giving the miners a very big tip!

For example, if you consume a 20-bitcoin UTXO to make a 1-bitcoin payment, you must include a
19-bitcoin change output back to your wallet. Otherwise, the 19-bitcoin "leftover" will be counted as
a transaction fee and will be collected by the miner who mines your transaction in a block.
Although you will receive priority processing and make a miner very happy, this is probably not
what you intended.

WARNING
If you forget to add a change output in a manually constructed transaction,
you will be paying the change as a transaction fee. "Keep the change!" might
not be what you intended.

Let’s see how this works in practice, by looking at Alice’s coffee purchase again. Alice wants to
spend 0.015 bitcoin to pay for coffee. To ensure this transaction is processed promptly, she will
want to include a transaction fee, say 0.001. That will mean that the total cost of the transaction will
be 0.016. Her wallet must therefore source a set of UTXO that adds up to 0.016 bitcoin or more and,
if necessary, create change. Let’s say her wallet has a 0.2-bitcoin UTXO available. It will therefore
need to consume this UTXO, create one output to Bob’s Cafe for 0.015, and a second output with
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0.184 bitcoin in change back to her own wallet, leaving 0.001 bitcoin unallocated, as an implicit fee
for the transaction.

Now let’s look at a different scenario. Eugenia, our children’s charity director in the Philippines, has
completed a fundraiser to purchase school books for the children. She received several thousand
small donations from people all around the world, totaling 50 bitcoin, so her wallet is full of very
small payments (UTXO). Now she wants to purchase hundreds of school books from a local
publisher, paying in bitcoin.

As Eugenia’s wallet application tries to construct a single larger payment transaction, it must source
from the available UTXO set, which is composed of many smaller amounts. That means that the
resulting transaction will source from more than a hundred small-value UTXO as inputs and only
one output, paying the book publisher. A transaction with that many inputs will be larger than one
kilobyte, perhaps 2 to 3 kilobytes in size. As a result, it will require a higher fee than the minimal
network fee of 0.0001 bitcoin.

Eugenia’s wallet application will calculate the appropriate fee by measuring the size of the
transaction and multiplying that by the per-kilobyte fee. Many wallets will overpay fees for larger
transactions to ensure the transaction is processed promptly. The higher fee is not because Eugenia
is spending more money, but because her transaction is more complex and larger in size—the fee is
independent of the transaction’s bitcoin value.

Transaction Chaining and Orphan Transactions
As we have seen, transactions form a chain, whereby one transaction spends the outputs of the
previous transaction (known as the parent) and creates outputs for a subsequent transaction
(known as the child). Sometimes an entire chain of transactions depending on each other—say a
parent, child, and grandchild transaction—are created at the same time, to fulfill a complex
transactional workflow that requires valid children to be signed before the parent is signed. For
example, this is a technique used in CoinJoin transactions where multiple parties join transactions
together to protect their privacy.

When a chain of transactions is transmitted across the network, they don’t always arrive in the
same order. Sometimes, the child might arrive before the parent. In that case, the nodes that see a
child first can see that it references a parent transaction that is not yet known. Rather than reject
the child, they put it in a temporary pool to await the arrival of its parent and propagate it to every
other node. The pool of transactions without parents is known as the orphan transaction pool. Once
the parent arrives, any orphans that reference the UTXO created by the parent are released from
the pool, revalidated recursively, and then the entire chain of transactions can be included in the
transaction pool, ready to be mined in a block. Transaction chains can be arbitrarily long, with any
number of generations transmitted simultaneously. The mechanism of holding orphans in the
orphan pool ensures that otherwise valid transactions will not be rejected just because their parent
has been delayed and that eventually the chain they belong to is reconstructed in the correct order,
regardless of the order of arrival.

There is a limit to the number of orphan transactions stored in memory, to prevent a denial-of-
service attack against bitcoin nodes. The limit is defined as MAX_ORPHAN_TRANSACTIONS in the
source code of the bitcoin reference client. If the number of orphan transactions in the pool exceeds
MAX_ORPHAN_TRANSACTIONS, one or more randomly selected orphan transactions are evicted
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from the pool, until the pool size is back within limits.

Transaction Scripts and Script Language
Bitcoin clients validate transactions by executing a script, written in a Forth-like scripting language.
Both the locking script (encumbrance) placed on a UTXO and the unlocking script that usually
contains a signature are written in this scripting language. When a transaction is validated, the
unlocking script in each input is executed alongside the corresponding locking script to see if it
satisfies the spending condition.

Today, most transactions processed through the bitcoin network have the form "Alice pays Bob" and
are based on the same script called a Pay-to-Public-Key-Hash script. However, the use of scripts to
lock outputs and unlock inputs means that through use of the programming language, transactions
can contain an infinite number of conditions. Bitcoin transactions are not limited to the "Alice pays
Bob" form and pattern.

This is only the tip of the iceberg of possibilities that can be expressed with this scripting language.
In this section, we will demonstrate the components of the bitcoin transaction scripting language
and show how it can be used to express complex conditions for spending and how those conditions
can be satisfied by unlocking scripts.

TIP

Bitcoin transaction validation is not based on a static pattern, but instead is achieved
through the execution of a scripting language. This language allows for a nearly
infinite variety of conditions to be expressed. This is how bitcoin gets the power of
"programmable money."

Script Construction (Lock + Unlock)

Bitcoin’s transaction validation engine relies on two types of scripts to validate transactions: a
locking script and an unlocking script.

A locking script is an encumbrance placed on an output, and it specifies the conditions that must be
met to spend the output in the future. Historically, the locking script was called a scriptPubKey,
because it usually contained a public key or bitcoin address. In this book we refer to it as a "locking
script" to acknowledge the much broader range of possibilities of this scripting technology. In most
bitcoin applications, what we refer to as a locking script will appear in the source code as
scriptPubKey.

An unlocking script is a script that "solves," or satisfies, the conditions placed on an output by a
locking script and allows the output to be spent. Unlocking scripts are part of every transaction
input, and most of the time they contain a digital signature produced by the user’s wallet from his
or her private key. Historically, the unlocking script is called scriptSig, because it usually contained
a digital signature. In most bitcoin applications, the source code refers to the unlocking script as
scriptSig. In this book, we refer to it as an "unlocking script" to acknowledge the much broader
range of locking script requirements, because not all unlocking scripts must contain signatures.

Every bitcoin client will validate transactions by executing the locking and unlocking scripts
together. For each input in the transaction, the validation software will first retrieve the UTXO

118



referenced by the input. That UTXO contains a locking script defining the conditions required to
spend it. The validation software will then take the unlocking script contained in the input that is
attempting to spend this UTXO and execute the two scripts.

In the original bitcoin client, the unlocking and locking scripts were concatenated and executed in
sequence. For security reasons, this was changed in 2010, because of a vulnerability that allowed a
malformed unlocking script to push data onto the stack and corrupt the locking script. In the
current implementation, the scripts are executed separately with the stack transferred between the
two executions, as described next.

First, the unlocking script is executed, using the stack execution engine. If the unlocking script
executed without errors (e.g., it has no "dangling" operators left over), the main stack (not the
alternate stack) is copied and the locking script is executed. If the result of executing the locking
script with the stack data copied from the unlocking script is "TRUE," the unlocking script has
succeeded in resolving the conditions imposed by the locking script and, therefore, the input is a
valid authorization to spend the UTXO. If any result other than "TRUE" remains after execution of
the combined script, the input is invalid because it has failed to satisfy the spending conditions
placed on the UTXO. Note that the UTXO is permanently recorded in the blockchain, and therefore
is invariable and is unaffected by failed attempts to spend it by reference in a new transaction. Only
a valid transaction that correctly satisfies the conditions of the UTXO results in the UTXO being
marked as "spent" and removed from the set of available (unspent) UTXO.

Combining scriptSig and scriptPubKey to evaluate a transaction script is an example of the
unlocking and locking scripts for the most common type of bitcoin transaction (a payment to a
public key hash), showing the combined script resulting from the concatenation of the unlocking
and locking scripts prior to script validation.

Figure 35. Combining scriptSig and scriptPubKey to evaluate a transaction script

Scripting Language

The bitcoin transaction script language, called Script, is a Forth-like reverse-polish notation stack-
based execution language. If that sounds like gibberish, you probably haven’t studied 1960’s
programming languages. Script is a very simple language that was designed to be limited in scope
and executable on a range of hardware, perhaps as simple as an embedded device, such as a
handheld calculator. It requires minimal processing and cannot do many of the fancy things
modern programming languages can do. In the case of programmable money, that is a deliberate
security feature.
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Bitcoin’s scripting language is called a stack-based language because it uses a data structure called a
stack. A stack is a very simple data structure, which can be visualized as a stack of cards. A stack
allows two operations: push and pop. Push adds an item on top of the stack. Pop removes the top
item from the stack.

The scripting language executes the script by processing each item from left to right. Numbers (data
constants) are pushed onto the stack. Operators push or pop one or more parameters from the
stack, act on them, and might push a result onto the stack. For example, OP_ADD will pop two items
from the stack, add them, and push the resulting sum onto the stack.

Conditional operators evaluate a condition, producing a boolean result of TRUE or FALSE. For
example, OP_EQUAL pops two items from the stack and pushes TRUE (TRUE is represented by the
number 1) if they are equal or FALSE (represented by zero) if they are not equal. Bitcoin transaction
scripts usually contain a conditional operator, so that they can produce the TRUE result that
signifies a valid transaction.

In Bitcoin’s script validation doing simple math, the script 2 3 OP_ADD 5 OP_EQUAL demonstrates
the arithmetic addition operator OP_ADD, adding two numbers and putting the result on the stack,
followed by the conditional operator OP_EQUAL, which checks that the resulting sum is equal to 5.
For brevity, the OP_ prefix is omitted in the step-by-step example.

The following is a slightly more complex script, which calculates 2 + 7 – 3 + 1. Notice that when the
script contains several operators in a row, the stack allows the results of one operator to be acted
upon by the next operator:

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

Try validating the preceding script yourself using pencil and paper. When the script execution
ends, you should be left with the value TRUE on the stack.

Although most locking scripts refer to a bitcoin address or public key, thereby requiring proof of
ownership to spend the funds, the script does not have to be that complex. Any combination of
locking and unlocking scripts that results in a TRUE value is valid. The simple arithmetic we used as
an example of the scripting language is also a valid locking script that can be used to lock a
transaction output.

Use part of the arithmetic example script as the locking script:

3 OP_ADD 5 OP_EQUAL

which can be satisfied by a transaction containing an input with the unlocking script:

2

The validation software combines the locking and unlocking scripts and the resulting script is:
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2 3 OP_ADD 5 OP_EQUAL

As we saw in the step-by-step example in Bitcoin’s script validation doing simple math, when this
script is executed, the result is OP_TRUE, making the transaction valid. Not only is this a valid
transaction output locking script, but the resulting UTXO could be spent by anyone with the
arithmetic skills to know that the number 2 satisfies the script.
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Figure 36. Bitcoin’s script validation doing simple math
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TIP

Transactions are valid if the top result on the stack is TRUE (noted as
&#x7b;0x01&#x7d;), any other non-zero value or if the stack is empty after script
execution. Transactions are invalid if the top value on the stack is FALSE (a zero-length
empty value, noted as &#x7b;&#x7d;) or if script execution is halted explicitly by an
operator, such as OP_VERIFY, OP_RETURN, or a conditional terminator such as
OP_ENDIF. See Transaction Script Language Operators, Constants, and Symbols for
details.

Turing Incompleteness

The bitcoin transaction script language contains many operators, but is deliberately limited in one
important way—there are no loops or complex flow control capabilities other than conditional flow
control. This ensures that the language is not Turing Complete, meaning that scripts have limited
complexity and predictable execution times. Script is not a general-purpose language. These
limitations ensure that the language cannot be used to create an infinite loop or other form of "logic
bomb" that could be embedded in a transaction in a way that causes a denial-of-service attack
against the bitcoin network. Remember, every transaction is validated by every full node on the
bitcoin network. A limited language prevents the transaction validation mechanism from being
used as a vulnerability.

Stateless Verification

The bitcoin transaction script language is stateless, in that there is no state prior to execution of the
script, or state saved after execution of the script. Therefore, all the information needed to execute
a script is contained within the script. A script will predictably execute the same way on any
system. If your system verifies a script, you can be sure that every other system in the bitcoin
network will also verify the script, meaning that a valid transaction is valid for everyone and
everyone knows this. This predictability of outcomes is an essential benefit of the bitcoin system.

Standard Transactions
In the first few years of bitcoin’s development, the developers introduced some limitations in the
types of scripts that could be processed by the reference client. These limitations are encoded in a
function called isStandard(), which defines five types of "standard" transactions. These limitations
are temporary and might be lifted by the time you read this. Until then, the five standard types of
transaction scripts are the only ones that will be accepted by the reference client and most miners
who run the reference client. Although it is possible to create a nonstandard transaction containing
a script that is not one of the standard types, you must find a miner who does not follow these
limitations to mine that transaction into a block.

Check the source code of the Bitcoin Core client (the reference implementation) to see what is
currently allowed as a valid transaction script.

The five standard types of transaction scripts are pay-to-public-key-hash (P2PKH), public-key, multi-
signature (limited to 15 keys), pay-to-script-hash (P2SH), and data output (OP_RETURN), which are
described in more detail in the following sections.
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Pay-to-Public-Key-Hash (P2PKH)

The vast majority of transactions processed on the bitcoin network are P2PKH transactions. These
contain a locking script that encumbers the output with a public key hash, more commonly known
as a bitcoin address. Transactions that pay a bitcoin address contain P2PKH scripts. An output
locked by a P2PKH script can be unlocked (spent) by presenting a public key and a digital signature
created by the corresponding private key.

For example, let’s look at Alice’s payment to Bob’s Cafe again. Alice made a payment of 0.015 bitcoin
to the cafe’s bitcoin address. That transaction output would have a locking script of the form:

OP_DUP OP_HASH160 <Cafe Public Key Hash> OP_EQUAL OP_CHECKSIG

The Cafe Public Key Hash is equivalent to the bitcoin address of the cafe, without the Base58Check
encoding. Most applications would show the public key hash in hexadecimal encoding and not the
familiar bitcoin address Base58Check format that begins with a "1".

The preceding locking script can be satisfied with an unlocking script of the form:

<Cafe Signature> <Cafe Public Key>

The two scripts together would form the following combined validation script:

<Cafe Signature> <Cafe Public Key> OP_DUP OP_HASH160
<Cafe Public Key Hash> OP_EQUAL OP_CHECKSIG

When executed, this combined script will evaluate to TRUE if, and only if, the unlocking script
matches the conditions set by the locking script. In other words, the result will be TRUE if the
unlocking script has a valid signature from the cafe’s private key that corresponds to the public key
hash set as an encumbrance.

Figures <a data-type="xref" href="#P2PubKHash1" data-xrefstyle="select:
labelnumber">#P2PubKHash1</a> and <a data-type="xref" href="#P2PubKHash2" data-
xrefstyle="select: labelnumber">#P2PubKHash2</a> show (in two parts) a step-by-step execution of
the combined script, which will prove this is a valid transaction.<a name="__indexterm-611"
type="indexterm">�</a><a name="__indexterm-612" type="indexterm">�</a>
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Figure 37. Evaluating a script for a P2PKH transaction (Part 1 of 2)

Pay-to-Public-Key

Pay-to-public-key is a simpler form of a bitcoin payment than pay-to-public-key-hash. With this
script form, the public key itself is stored in the locking script, rather than a public-key-hash as with
P2PKH earlier, which is much shorter. Pay-to-public-key-hash was invented by Satoshi to make
bitcoin addresses shorter, for ease of use. Pay-to-public-key is now most often seen in coinbase
transactions, generated by older mining software that has not been updated to use P2PKH.

A pay-to-public-key locking script looks like this:

<Public Key A> OP_CHECKSIG

The corresponding unlocking script that must be presented to unlock this type of output is a simple
signature, like this:

<Signature from Private Key A>
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The combined script, which is validated by the transaction validation software, is:

<Signature from Private Key A> <Public Key A> OP_CHECKSIG

This script is a simple invocation of the CHECKSIG operator, which validates the signature as
belonging to the correct key and returns TRUE on the stack.

Figure 38. Evaluating a script for a P2PKH transaction (Part 2 of 2)

Multi-Signature

Multi-signature scripts set a condition where N public keys are recorded in the script and at least M
of those must provide signatures to release the encumbrance. This is also known as an M-of-N
scheme, where N is the total number of keys and M is the threshold of signatures required for
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validation. For example, a 2-of-3 multi-signature is one where three public keys are listed as
potential signers and at least two of those must be used to create signatures for a valid transaction
to spend the funds. At this time, standard multi-signature scripts are limited to at most 15 listed
public keys, meaning you can do anything from a 1-of-1 to a 15-of-15 multi-signature or any
combination within that range. The limitation to 15 listed keys might be lifted by the time this book
is published, so check the isStandard() function to see what is currently accepted by the network.

The general form of a locking script setting an M-of-N multi-signature condition is:

M <Public Key 1> <Public Key 2> ... <Public Key N> N OP_CHECKMULTISIG

where N is the total number of listed public keys and M is the threshold of required signatures to
spend the output.

A locking script setting a 2-of-3 multi-signature condition looks like this:

2 <Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

The preceding locking script can be satisfied with an unlocking script containing pairs of signatures
and public keys:

OP_0 <Signature B> <Signature C>

or any combination of two signatures from the private keys corresponding to the three listed public
keys.

NOTE
The prefix OP_0 is required because of a bug in the original implementation of
CHECKMULTISIG where one item too many is popped off the stack. It is ignored by
CHECKMULTISIG and is simply a placeholder.

The two scripts together would form the combined validation script:

OP_0 <Signature B> <Signature C> 2 <Public Key A> <Public Key B> <Public Key C> 3
OP_CHECKMULTISIG

When executed, this combined script will evaluate to TRUE if, and only if, the unlocking script
matches the conditions set by the locking script. In this case, the condition is whether the unlocking
script has a valid signature from the two private keys that correspond to two of the three public
keys set as an encumbrance.

Data Output (OP_RETURN)

Bitcoin’s distributed and timestamped ledger, the blockchain, has potential uses far beyond
payments. Many developers have tried to use the transaction scripting language to take advantage
of the security and resilience of the system for applications such as digital notary services, stock
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certificates, and smart contracts. Early attempts to use bitcoin’s script language for these purposes
involved creating transaction outputs that recorded data on the blockchain; for example, to record
a digital fingerprint of a file in such a way that anyone could establish proof-of-existence of that file
on a specific date by reference to that transaction.

The use of bitcoin’s blockchain to store data unrelated to bitcoin payments is a controversial
subject. Many developers consider such use abusive and want to discourage it. Others view it as a
demonstration of the powerful capabilities of blockchain technology and want to encourage such
experimentation. Those who object to the inclusion of non-payment data argue that it causes
"blockchain bloat," burdening those running full bitcoin nodes with carrying the cost of disk
storage for data that the blockchain was not intended to carry. Moreover, such transactions create
UTXO that cannot be spent, using the destination bitcoin address as a free-form 20-byte field.
Because the address is used for data, it doesn’t correspond to a private key and the resulting UTXO
can never be spent; it’s a fake payment. These transactions that can never be spent are therefore
never removed from the UTXO set and cause the size of the UTXO database to forever increase, or
"bloat."

In version 0.9 of the Bitcoin Core client, a compromise was reached with the introduction of the
OP_RETURN operator. OP_RETURN allows developers to add 80 bytes of nonpayment data to a
transaction output. However, unlike the use of "fake" UTXO, the OP_RETURN operator creates an
explicitly provably unspendable output, which does not need to be stored in the UTXO set.
OP_RETURN outputs are recorded on the blockchain, so they consume disk space and contribute to
the increase in the blockchain’s size, but they are not stored in the UTXO set and therefore do not
bloat the UTXO memory pool and burden full nodes with the cost of more expensive RAM.

OP_RETURN scripts look like this:

OP_RETURN <data>

The data portion is limited to 80 bytes and most often represents a hash, such as the output from
the SHA256 algorithm (32 bytes). Many applications put a prefix in front of the data to help identify
the application. For example, the Proof of Existence digital notarization service uses the 8-byte
prefix DOCPROOF, which is ASCII encoded as 44 4f 43 50 52 4f 4f 46 in hexadecimal.

Keep in mind that there is no "unlocking script" that corresponds to OP_RETURN that could possibly
be used to "spend" an OP_RETURN output. The whole point of OP_RETURN is that you can’t spend
the money locked in that output, and therefore it does not need to be held in the UTXO set as
potentially spendable—OP_RETURN is provably un-spendable. OP_RETURN is usually an output with
a zero bitcoin amount, because any bitcoin assigned to such an output is effectively lost forever. If
an OP_RETURN is encountered by the script validation software, it results immediately in halting
the execution of the validation script and marking the transaction as invalid. Thus, if you
accidentally reference an OP_RETURN output as an input in a transaction, that transaction is
invalid.

A standard transaction (one that conforms to the isStandard() checks) can have only one
OP_RETURN output. However, a single OP_RETURN output can be combined in a transaction with
outputs of any other type.
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Two new command-line options have been added in Bitcoin Core as of version 0.10. The option
datacarrier controls relay and mining of OP_RETURN transactions, with the default set to "1" to
allow them. The option datacarriersize takes a numeric argument specifying the maximum size in
bytes of the OP_RETURN data, 40 bytes by default.

NOTE

OP_RETURN was initially proposed with a limit of 80 bytes, but the limit was
reduced to 40 bytes when the feature was released. In February 2015, in version
0.10 of Bitcoin Core, the limit was raised back to 80 bytes. Nodes may choose not to
relay or mine OP_RETURN, or only relay and mine OP_RETURN containing less than
80 bytes of data.

Pay-to-Script-Hash (P2SH)

Pay-to-script-hash (P2SH) was introduced in 2012 as a powerful new type of transaction that greatly
simplifies the use of complex transaction scripts. To explain the need for P2SH, let’s look at a
practical example.

In Introduction we introduced Mohammed, an electronics importer based in Dubai. Mohammed’s
company uses bitcoin’s multi-signature feature extensively for its corporate accounts. Multi-
signature scripts are one of the most common uses of bitcoin’s advanced scripting capabilities and
are a very powerful feature. Mohammed’s company uses a multi-signature script for all customer
payments, known in accounting terms as "accounts receivable," or AR. With the multi-signature
scheme, any payments made by customers are locked in such a way that they require at least two
signatures to release, from Mohammed and one of his partners or from his attorney who has a
backup key. A multi-signature scheme like that offers corporate governance controls and protects
against theft, embezzlement, or loss.

The resulting script is quite long and looks like this:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key> <Partner3 Public
Key> <Attorney Public Key> 5 OP_CHECKMULTISIG

Although multi-signature scripts are a powerful feature, they are cumbersome to use. Given the
preceding script, Mohammed would have to communicate this script to every customer prior to
payment. Each customer would have to use special bitcoin wallet software with the ability to create
custom transaction scripts, and each customer would have to understand how to create a
transaction using custom scripts. Furthermore, the resulting transaction would be about five times
larger than a simple payment transaction, because this script contains very long public keys. The
burden of that extra-large transaction would be borne by the customer in the form of fees. Finally, a
large transaction script like this would be carried in the UTXO set in RAM in every full node, until it
was spent. All of these issues make using complex output scripts difficult in practice.

Pay-to-script-hash (P2SH) was developed to resolve these practical difficulties and to make the use
of complex scripts as easy as a payment to a bitcoin address. With P2SH payments, the complex
locking script is replaced with its digital fingerprint, a cryptographic hash. When a transaction
attempting to spend the UTXO is presented later, it must contain the script that matches the hash, in
addition to the unlocking script. In simple terms, P2SH means "pay to a script matching this hash, a
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script that will be presented later when this output is spent."

In P2SH transactions, the locking script that is replaced by a hash is referred to as the redeem script
because it is presented to the system at redemption time rather than as a locking script. Complex
script without P2SH shows the script without P2SH and Complex script as P2SH shows the same
script encoded with P2SH.

Table 18. Complex script without P2SH

Locking Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5
5 OP_CHECKMULTISIG

Unlocking Script Sig1 Sig2

Table 19. Complex script as P2SH

Redeem Script 2 PubKey1 PubKey2 PubKey3 PubKey4 PubKey5
5 OP_CHECKMULTISIG

Locking Script OP_HASH160 <20-byte hash of redeem script>
OP_EQUAL

Unlocking Script Sig1 Sig2 redeem script

As you can see from the tables, with P2SH the complex script that details the conditions for
spending the output (redeem script) is not presented in the locking script. Instead, only a hash of it
is in the locking script and the redeem script itself is presented later, as part of the unlocking script
when the output is spent. This shifts the burden in fees and complexity from the sender to the
recipient (spender) of the transaction.

Let’s look at Mohammed’s company, the complex multi-signature script, and the resulting P2SH
scripts.

First, the multi-signature script that Mohammed’s company uses for all incoming payments from
customers:

2 <Mohammed's Public Key> <Partner1 Public Key> <Partner2 Public Key> <Partner3 Public
Key> <Attorney Public Key> 5 OP_CHECKMULTISIG

If the placeholders are replaced by actual public keys (shown here as 520-bit numbers starting with
04) you can see that this script becomes very long:
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2
04C16B8698A9ABF84250A7C3EA7EEDEF9897D1C8C6ADF47F06CF73370D74DCCA01CDCA79DCC5C395D7EEC6
984D83F1F50C900A24DD47F569FD4193AF5DE762C58704A2192968D8655D6A935BEAF2CA23E3FB87A3495E
7AF308EDF08DAC3C1FCBFC2C75B4B0F4D0B1B70CD2423657738C0C2B1D5CE65C97D78D0E34224858008E8B
49047E63248B75DB7379BE9CDA8CE5751D16485F431E46117B9D0C1837C9D5737812F393DA7D4420D7E1A9
162F0279CFC10F1E8E8F3020DECDBC3C0DD389D99779650421D65CBD7149B255382ED7F78E946580657EE6
FDA162A187543A9D85BAAA93A4AB3A8F044DADA618D087227440645ABE8A35DA8C5B73997AD343BE5C2AFD
94A5043752580AFA1ECED3C68D446BCAB69AC0BA7DF50D56231BE0AABF1FDEEC78A6A45E394BA29A1EDF51
8C022DD618DA774D207D137AAB59E0B000EB7ED238F4D800 5 OP_CHECKMULTISIG

This entire script can instead be represented by a 20-byte cryptographic hash, by first applying the
SHA256 hashing algorithm and then applying the RIPEMD160 algorithm on the result. The 20-byte
hash of the preceding script is:

54c557e07dde5bb6cb791c7a540e0a4796f5e97e

A P2SH transaction locks the output to this hash instead of the longer script, using the locking
script:

OP_HASH160 54c557e07dde5bb6cb791c7a540e0a4796f5e97e OP_EQUAL

which, as you can see, is much shorter. Instead of "pay to this 5-key multi-signature script," the
P2SH equivalent transaction is "pay to a script with this hash." A customer making a payment to
Mohammed’s company need only include this much shorter locking script in his payment. When
Mohammed wants to spend this UTXO, they must present the original redeem script (the one whose
hash locked the UTXO) and the signatures necessary to unlock it, like this:

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG>

The two scripts are combined in two stages. First, the redeem script is checked against the locking
script to make sure the hash matches:

<2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG> OP_HASH160 <redeem scriptHash> OP_EQUAL

If the redeem script hash matches, the unlocking script is executed on its own, to unlock the redeem
script:

<Sig1> <Sig2> 2 PK1 PK2 PK3 PK4 PK5 5 OP_CHECKMULTISIG

Pay-to-script-hash addresses

Another important part of the P2SH feature is the ability to encode a script hash as an address, as
defined in BIP0013. P2SH addresses are Base58Check encodings of the 20-byte hash of a script, just
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like bitcoin addresses are Base58Check encodings of the 20-byte hash of a public key. P2SH
addresses use the version prefix "5", which results in Base58Check-encoded addresses that start
with a "3". For example, Mohammed’s complex script, hashed and Base58Check-encoded as a P2SH
address becomes 39RF6JqABiHdYHkfChV6USGMe6Nsr66Gzw. Now, Mohammed can give this
"address" to his customers and they can use almost any bitcoin wallet to make a simple payment, as
if it were a bitcoin address. The 3 prefix gives them a hint that this is a special type of address, one
corresponding to a script instead of a public key, but otherwise it works in exactly the same way as
a payment to a bitcoin address.

P2SH addresses hide all of the complexity, so that the person making a payment does not see the
script.

Benefits of pay-to-script-hash

The pay-to-script-hash feature offers the following benefits compared to the direct use of complex
scripts in locking outputs:

• Complex scripts are replaced by shorter fingerprints in the transaction output, making the
transaction smaller.

• Scripts can be coded as an address, so the sender and the sender’s wallet don’t need complex
engineering to implement P2SH.

• P2SH shifts the burden of constructing the script to the recipient, not the sender.

• P2SH shifts the burden in data storage for the long script from the output (which is in the UTXO
set) to the input (stored on the blockchain).

• P2SH shifts the burden in data storage for the long script from the present time (payment) to a
future time (when it is spent).

• P2SH shifts the transaction fee cost of a long script from the sender to the recipient, who has to
include the long redeem script to spend it.

Redeem script and isStandard validation

Prior to version 0.9.2 of the Bitcoin Core client, pay-to-script-hash was limited to the standard types
of bitcoin transaction scripts, by the isStandard() function. That means that the redeem script
presented in the spending transaction could only be one of the standard types: P2PK, P2PKH, or
multi-sig nature, excluding OP_RETURN and P2SH itself.

As of version 0.9.2 of the Bitcoin Core client, P2SH transactions can contain any valid script, making
the P2SH standard much more flexible and allowing for experimentation with many novel and
complex types of transactions.

Note that you are not able to put a P2SH inside a P2SH redeem script, because the P2SH
specification is not recursive. You are also still not able to use OP_RETURN in a redeem script
because OP_RETURN cannot be redeemed by definition.

Note that because the redeem script is not presented to the network until you attempt to spend a
P2SH output, if you lock an output with the hash of an invalid transaction it will be processed
regardless. However, you will not be able to spend it because the spending transaction, which
includes the redeem script, will not be accepted because it is an invalid script. This creates a risk,
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because you can lock bitcoin in a P2SH that cannot be spent later. The network will accept the P2SH
encumbrance even if it corresponds to an invalid redeem script, because the script hash gives no
indication of the script it represents.

WARNING

P2SH locking scripts contain the hash of a redeem script, which gives no clues
as to the content of the redeem script itself. The P2SH transaction will be
considered valid and accepted even if the redeem script is invalid. You might
accidentally lock bitcoin in such a way that it cannot later be spent.

The Bitcoin Network

Peer-to-Peer Network Architecture
Bitcoin is structured as a peer-to-peer network architecture on top of the Internet. The term peer-to-
peer, or P2P, means that the computers that participate in the network are peers to each other, that
they are all equal, that there are no "special" nodes, and that all nodes share the burden of
providing network services. The network nodes interconnect in a mesh network with a "flat"
topology. There is no server, no centralized service, and no hierarchy within the network. Nodes in
a peer-to-peer network both provide and consume services at the same time with reciprocity acting
as the incentive for participation. Peer-to-peer networks are inherently resilient, decentralized, and
open. The preeminent example of a P2P network architecture was the early Internet itself, where
nodes on the IP network were equal. Today’s Internet architecture is more hierarchical, but the
Internet Protocol still retains its flat-topology essence. Beyond bitcoin, the largest and most
successful application of P2P technologies is file sharing with Napster as the pioneer and BitTorrent
as the most recent evolution of the architecture.

Bitcoin’s P2P network architecture is much more than a topology choice. Bitcoin is a peer-to-peer
digital cash system by design, and the network architecture is both a reflection and a foundation of
that core characteristic. Decentralization of control is a core design principle and that can only be
achieved and maintained by a flat, decentralized P2P consensus network.

The term "bitcoin network" refers to the collection of nodes running the bitcoin P2P protocol. In
addition to the bitcoin P2P protocol, there are other protocols such as Stratum, which are used for
mining and lightweight or mobile wallets. These additional protocols are provided by gateway
routing servers that access the bitcoin network using the bitcoin P2P protocol, and then extend that
network to nodes running other protocols. For example, Stratum servers connect Stratum mining
nodes via the Stratum protocol to the main bitcoin network and bridge the Stratum protocol to the
bitcoin P2P protocol. We use the term "extended bitcoin network" to refer to the overall network
that includes the bitcoin P2P protocol, pool-mining protocols, the Stratum protocol, and any other
related protocols connecting the components of the bitcoin system.

Nodes Types and Roles
Although nodes in the bitcoin P2P network are equal, they may take on different roles depending
on the functionality they are supporting. A bitcoin node is a collection of functions: routing, the
blockchain database, mining, and wallet services. A full node with all four of these functions is
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shown in A bitcoin network node with all four functions: wallet, miner, full blockchain database,
and network routing.

Figure 39. A bitcoin network node with all four functions: wallet, miner, full blockchain database, and
network routing

All nodes include the routing function to participate in the network and might include other
functionality. All nodes validate and propagate transactions and blocks, and discover and maintain
connections to peers. In the full-node example in A bitcoin network node with all four functions:
wallet, miner, full blockchain database, and network routing, the routing function is indicated by
an orange circle named "Network Routing Node."

Some nodes, called full nodes, also maintain a complete and up-to-date copy of the blockchain. Full
nodes can autonomously and authoritatively verify any transaction without external reference.
Some nodes maintain only a subset of the blockchain and verify transactions using a method called
simplified payment verification, or SPV. These nodes are known as SPV or lightweight nodes. In the
full-node example in the figure, the full-node blockchain database function is indicated by a blue
circle named "Full Blockchain." In The extended bitcoin network showing various node types,
gateways, and protocols, SPV nodes are drawn without the blue circle, showing that they do not
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have a full copy of the blockchain.

Mining nodes compete to create new blocks by running specialized hardware to solve the proof-of-
work algorithm. Some mining nodes are also full nodes, maintaining a full copy of the blockchain,
while others are lightweight nodes participating in pool mining and depending on a pool server to
maintain a full node. The mining function is shown in the full node as a black circle named "Miner."

User wallets might be part of a full node, as is usually the case with desktop bitcoin clients.
Increasingly, many user wallets, especially those running on resource-constrained devices such as
smartphones, are SPV nodes. The wallet function is shown in A bitcoin network node with all four
functions: wallet, miner, full blockchain database, and network routing as a green circle named
"Wallet".

In addition to the main node types on the bitcoin P2P protocol, there are servers and nodes running
other protocols, such as specialized mining pool protocols and lightweight client-access protocols.

Different types of nodes on the extended bitcoin network shows the most common node types on
the extended bitcoin network.

The Extended Bitcoin Network
The main bitcoin network, running the bitcoin P2P protocol, consists of between 7,000 and 10,000
listening nodes running various versions of the bitcoin reference client (Bitcoin Core) and a few
hundred nodes running various other implementations of the bitcoin P2P protocol, such as BitcoinJ,
Libbitcoin, and btcd. A small percentage of the nodes on the bitcoin P2P network are also mining
nodes, competing in the mining process, validating transactions, and creating new blocks. Various
large companies interface with the bitcoin network by running full-node clients based on the
Bitcoin Core client, with full copies of the blockchain and a network node, but without mining or
wallet functions. These nodes act as network edge routers, allowing various other services
(exchanges, wallets, block explorers, merchant payment processing) to be built on top.

The extended bitcoin network includes the network running the bitcoin P2P protocol, described
earlier, as well as nodes running specialized protocols. Attached to the main bitcoin P2P network
are a number of pool servers and protocol gateways that connect nodes running other protocols.
These other protocol nodes are mostly pool mining nodes (see Mining and Consensus) and
lightweight wallet clients, which do not carry a full copy of the blockchain.

The extended bitcoin network showing various node types, gateways, and protocols shows the
extended bitcoin network with the various types of nodes, gateway servers, edge routers, and
wallet clients and the various protocols they use to connect to each other.
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Figure 40. Different types of nodes on the extended bitcoin network
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Figure 41. The extended bitcoin network showing various node types, gateways, and protocols
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Network Discovery
When a new node boots up, it must discover other bitcoin nodes on the network in order to
participate. To start this process, a new node must discover at least one existing node on the
network and connect to it. The geographic location of other nodes is irrelevant; the bitcoin network
topology is not geographically defined. Therefore, any existing bitcoin nodes can be selected at
random.

To connect to a known peer, nodes establish a TCP connection, usually to port 8333 (the port
generally known as the one used by bitcoin), or an alternative port if one is provided. Upon
establishing a connection, the node will start a "handshake" (see The initial handshake between
peers) by transmitting a version message, which contains basic identifying information, including:

nVersion

The bitcoin P2P protocol version the client "speaks" (e.g., 70002)

nLocalServices

A list of local services supported by the node, currently just NODE_NETWORK

nTime

The current time

addrYou

The IP address of the remote node as seen from this node

addrMe

The IP address of the local node, as discovered by the local node

subver

A sub-version showing the type of software running on this node (e.g., "/Satoshi:0.9.2.1/")+

BestHeight

The block height of this node’s blockchain

(See GitHub for an example of the version network message.)

The version message is always the first message sent by any peer to another peer. The local peer
receiving a version message will examine the remote peer’s reported nVersion and decide if the
remote peer is compatible. If the remote peer is compatible, the local peer will acknowledge the
version message and establish a connection, by sending a verack.

How does a new node find peers? The first method is to query DNS using a number of "DNS seeds,"
which are DNS servers that provide a list of IP addresses of bitcoin nodes. Some of those DNS seeds
provide a static list of IP addresses of stable bitcoin listening nodes. Some of the DNS seeds are
custom implementations of BIND (Berkeley Internet Name Daemon) that return a random subset
from a list of bitcoin node addresses collected by a crawler or a long-running bitcoin node. The
Bitcoin Core client contains the names of five different DNS seeds. The diversity of ownership and
diversity of implementation of the different DNS seeds offers a high level or reliability for the initial
bootstrapping process. In the Bitcoin Core client, the option to use the DNS seeds is controlled by
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the option switch -dnsseed (set to 1 by default, to use the DNS seed).

Alternatively, a bootstrapping node that knows nothing of the network must be given the IP address
of at least one bitcoin node, after which it can establish connections through further introductions.
The command-line argument -seednode can be used to connect to one node just for introductions,
using it as a seed. After the initial seed node is used to form introductions, the client will disconnect
from it and use the newly discovered peers.

Figure 42. The initial handshake between peers

Once one or more connections are established, the new node will send an addr message containing
its own IP address to its neighbors. The neighbors will, in turn, forward the addr message to their
neighbors, ensuring that the newly connected node becomes well known and better connected.
Additionally, the newly connected node can send getaddr to the neighbors, asking them to return a
list of IP addresses of other peers. That way, a node can find peers to connect to and advertise its
existence on the network for other nodes to find it. Address propagation and discovery shows the
address discovery protocol.
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Figure 43. Address propagation and discovery

A node must connect to a few different peers in order to establish diverse paths into the bitcoin
network. Paths are not reliable—nodes come and go—and so the node must continue to discover
new nodes as it loses old connections as well as assist other nodes when they bootstrap. Only one
connection is needed to bootstrap, because the first node can offer introductions to its peer nodes
and those peers can offer further introductions. It’s also unnecessary and wasteful of network
resources to connect to more than a handful of nodes. After bootstrapping, a node will remember
its most recent successful peer connections, so that if it is rebooted it can quickly reestablish
connections with its former peer network. If none of the former peers respond to its connection
request, the node can use the seed nodes to bootstrap again.

On a node running the Bitcoin Core client, you can list the peer connections with the command
getpeerinfo:

$ bitcoin-cli getpeerinfo
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[
    {
        "addr" : "85.213.199.39:8333",
        "services" : "00000001",
        "lastsend" : 1405634126,
        "lastrecv" : 1405634127,
        "bytessent" : 23487651,
        "bytesrecv" : 138679099,
        "conntime" : 1405021768,
        "pingtime" : 0.00000000,
        "version" : 70002,
        "subver" : "/Satoshi:0.9.2.1/",
        "inbound" : false,
        "startingheight" : 310131,
        "banscore" : 0,
        "syncnode" : true
    },
    {
        "addr" : "58.23.244.20:8333",
        "services" : "00000001",
        "lastsend" : 1405634127,
        "lastrecv" : 1405634124,
        "bytessent" : 4460918,
        "bytesrecv" : 8903575,
        "conntime" : 1405559628,
        "pingtime" : 0.00000000,
        "version" : 70001,
        "subver" : "/Satoshi:0.8.6/",
        "inbound" : false,
        "startingheight" : 311074,
        "banscore" : 0,
        "syncnode" : false
    }
]

To override the automatic management of peers and to specify a list of IP addresses, users can
provide the option -connect=<IPAddress> and specify one or more IP addresses. If this option is
used, the node will only connect to the selected IP addresses, instead of discovering and
maintaining the peer connections automatically.

If there is no traffic on a connection, nodes will periodically send a message to maintain the
connection. If a node has not communicated on a connection for more than 90 minutes, it is
assumed to be disconnected and a new peer will be sought. Thus, the network dynamically adjusts
to transient nodes and network problems, and can organically grow and shrink as needed without
any central control.
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Full Nodes
Full nodes are nodes that maintain a full blockchain with all transactions. More accurately, they
probably should be called "full blockchain nodes." In the early years of bitcoin, all nodes were full
nodes and currently the Bitcoin Core client is a full blockchain node. In the past two years,
however, new forms of bitcoin clients have been introduced that do not maintain a full blockchain
but run as lightweight clients. We’ll examine these in more detail in the next section.

Full blockchain nodes maintain a complete and up-to-date copy of the bitcoin blockchain with all
the transactions, which they independently build and verify, starting with the very first block
(genesis block) and building up to the latest known block in the network. A full blockchain node can
independently and authoritatively verify any transaction without recourse or reliance on any other
node or source of information. The full blockchain node relies on the network to receive updates
about new blocks of transactions, which it then verifies and incorporates into its local copy of the
blockchain.

Running a full blockchain node gives you the pure bitcoin experience: independent verification of
all transactions without the need to rely on, or trust, any other systems. It’s easy to tell if you’re
running a full node because it requires 20+ gigabytes of persistent storage (disk space) to store the
full blockchain. If you need a lot of disk and it takes two to three days to sync to the network, you
are running a full node. That is the price of complete independence and freedom from central
authority.

There are a few alternative implementations of full blockchain bitcoin clients, built using different
programming languages and software architectures. However, the most common implementation
is the reference client Bitcoin Core, also known as the Satoshi client. More than 90% of the nodes on
the bitcoin network run various versions of Bitcoin Core. It is identified as "Satoshi" in the sub-
version string sent in the version message and shown by the command getpeerinfo as we saw
earlier; for example, /Satoshi:0.8.6/.

Exchanging "Inventory"
The first thing a full node will do once it connects to peers is try to construct a complete blockchain.
If it is a brand-new node and has no blockchain at all, it only knows one block, the genesis block,
which is statically embedded in the client software. Starting with block #0 (the genesis block), the
new node will have to download hundreds of thousands of blocks to synchronize with the network
and re-establish the full blockchain.

The process of syncing the blockchain starts with the version message, because that contains
BestHeight, a node’s current blockchain height (number of blocks). A node will see the version
messages from its peers, know how many blocks they each have, and be able to compare to how
many blocks it has in its own blockchain. Peered nodes will exchange a getblocks message that
contains the hash (fingerprint) of the top block on their local blockchain. One of the peers will be
able to identify the received hash as belonging to a block that is not at the top, but rather belongs to
an older block, thus deducing that its own local blockchain is longer than its peer’s.

The peer that has the longer blockchain has more blocks than the other node and can identify
which blocks the other node needs in order to "catch up." It will identify the first 500 blocks to
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share and transmit their hashes using an inv (inventory) message. The node missing these blocks
will then retrieve them, by issuing a series of getdata messages requesting the full block data and
identifying the requested blocks using the hashes from the inv message.

Let’s assume, for example, that a node only has the genesis block. It will then receive an inv
message from its peers containing the hashes of the next 500 blocks in the chain. It will start
requesting blocks from all of its connected peers, spreading the load and ensuring that it doesn’t
overwhelm any peer with requests. The node keeps track of how many blocks are "in transit" per
peer connection, meaning blocks that it has requested but not received, checking that it does not
exceed a limit (MAX_BLOCKS_IN_TRANSIT_PER_PEER). This way, if it needs a lot of blocks, it will
only request new ones as previous requests are fulfilled, allowing the peers to control the pace of
updates and not overwhelming the network. As each block is received, it is added to the blockchain,
as we will see in The Blockchain. As the local blockchain is gradually built up, more blocks are
requested and received, and the process continues until the node catches up to the rest of the
network.

This process of comparing the local blockchain with the peers and retrieving any missing blocks
happens any time a node goes offline for any period of time. Whether a node has been offline for a
few minutes and is missing a few blocks, or a month and is missing a few thousand blocks, it starts
by sending getblocks, gets an inv response, and starts downloading the missing blocks. Node
synchronizing the blockchain by retrieving blocks from a peer shows the inventory and block
propagation protocol.

Simplified Payment Verification (SPV) Nodes
Not all nodes have the ability to store the full blockchain. Many bitcoin clients are designed to run
on space- and power-constrained devices, such as smartphones, tablets, or embedded systems. For
such devices, a simplified payment verification (SPV) method is used to allow them to operate
without storing the full blockchain. These types of clients are called SPV clients or lightweight
clients. As bitcoin adoption surges, the SPV node is becoming the most common form of bitcoin
node, especially for bitcoin wallets.

SPV nodes download only the block headers and do not download the transactions included in each
block. The resulting chain of blocks, without transactions, is 1,000 times smaller than the full
blockchain. SPV nodes cannot construct a full picture of all the UTXOs that are available for
spending because they do not know about all the transactions on the network. SPV nodes verify
transactions using a slightly different methodology that relies on peers to provide partial views of
relevant parts of the blockchain on demand.
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Figure 44. Node synchronizing the blockchain by retrieving blocks from a peer
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As an analogy, a full node is like a tourist in a strange city, equipped with a detailed map of every
street and every address. By comparison, an SPV node is like a tourist in a strange city asking
random strangers for turn-by-turn directions while knowing only one main avenue. Although both
tourists can verify the existence of a street by visiting it, the tourist without a map doesn’t know
what lies down any of the side streets and doesn’t know what other streets exist. Positioned in front
of 23 Church Street, the tourist without a map cannot know if there are a dozen other "23 Church
Street" addresses in the city and whether this is the right one. The mapless tourist’s best chance is to
ask enough people and hope some of them are not trying to mug him.

Simplified payment verification verifies transactions by reference to their depth in the blockchain
instead of their height. Whereas a full blockchain node will construct a fully verified chain of
thousands of blocks and transactions reaching down the blockchain (back in time) all the way to
the genesis block, an SPV node will verify the chain of all blocks (but not all transactions) and link
that chain to the transaction of interest.

For example, when examining a transaction in block 300,000, a full node links all 300,000 blocks
down to the genesis block and builds a full database of UTXO, establishing the validity of the
transaction by confirming that the UTXO remains unspent. An SPV node cannot validate whether
the UTXO is unspent. Instead, the SPV node will establish a link between the transaction and the
block that contains it, using a merkle path (see Merkle Trees). Then, the SPV node waits until it sees
the six blocks 300,001 through 300,006 piled on top of the block containing the transaction and
verifies it by establishing its depth under blocks 300,006 to 300,001. The fact that other nodes on the
network accepted block 300,000 and then did the necessary work to produce six more blocks on top
of it is proof, by proxy, that the transaction was not a double-spend.

An SPV node cannot be persuaded that a transaction exists in a block when the transaction does not
in fact exist. The SPV node establishes the existence of a transaction in a block by requesting a
merkle path proof and by validating the proof of work in the chain of blocks. However, a
transaction’s existence can be "hidden" from an SPV node. An SPV node can definitely prove that a
transaction exists but cannot verify that a transaction, such as a double-spend of the same UTXO,
doesn’t exist because it doesn’t have a record of all transactions. This vulnerability can be used in a
denial-of-service attack or for a double-spending attack against SPV nodes. To defend against this,
an SPV node needs to connect randomly to several nodes, to increase the probability that it is in
contact with at least one honest node. This need to randomly connect means that SPV nodes also
are vulnerable to network partitioning attacks or Sybil attacks, where they are connected to fake
nodes or fake networks and do not have access to honest nodes or the real bitcoin network.

For most practical purposes, well-connected SPV nodes are secure enough, striking the right
balance between resource needs, practicality, and security. For infallible security, however, nothing
beats running a full blockchain node.

TIP
A full blockchain node verifies a transaction by checking the entire chain of thousands
of blocks below it in order to guarantee that the UTXO is not spent, whereas an SPV
node checks how deep the block is buried by a handful of blocks above it.

To get the block headers, SPV nodes use a getheaders message instead of getblocks. The responding
peer will send up to 2,000 block headers using a single headers message. The process is otherwise
the same as that used by a full node to retrieve full blocks. SPV nodes also set a filter on the
connection to peers, to filter the stream of future blocks and transactions sent by the peers. Any
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transactions of interest are retrieved using a getdata request. The peer generates a tx message
containing the transactions, in response. SPV node synchronizing the block headers shows the
synchronization of block headers.

Figure 45. SPV node synchronizing the block headers

Because SPV nodes need to retrieve specific transactions in order to selectively verify them, they
also create a privacy risk. Unlike full blockchain nodes, which collect all transactions within each
block, the SPV node’s requests for specific data can inadvertently reveal the addresses in their
wallet. For example, a third party monitoring a network could keep track of all the transactions
requested by a wallet on an SPV node and use those to associate bitcoin addresses with the user of
that wallet, destroying the user’s privacy.
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Shortly after the introduction of SPV/lightweight nodes, the bitcoin developers added a feature
called bloom filters to address the privacy risks of SPV nodes. Bloom filters allow SPV nodes to
receive a subset of the transactions without revealing precisely which addresses they are interested
in, through a filtering mechanism that uses probabilities rather than fixed patterns.

Bloom Filters
A bloom filter is a probabilistic search filter, a way to describe a desired pattern without specifying
it exactly. Bloom filters offer an efficient way to express a search pattern while protecting privacy.
They are used by SPV nodes to ask their peers for transactions matching a specific pattern, without
revealing exactly which addresses they are searching for.

In our previous analogy, a tourist without a map is asking for directions to a specific address, "23
Church St." If she asks strangers for directions to this street, she inadvertently reveals her
destination. A bloom filter is like asking, "Are there any streets in this neighborhood whose name
ends in R-C-H?" A question like that reveals slightly less about the desired destination than asking
for "23 Church St." Using this technique, a tourist could specify the desired address in more detail as
"ending in U-R-C-H" or less detail as "ending in H." By varying the precision of the search, the tourist
reveals more or less information, at the expense of getting more or less specific results. If she asks a
less specific pattern, she gets a lot more possible addresses and better privacy, but many of the
results are irrelevant. If she asks for a very specific pattern, she gets fewer results but loses privacy.

Bloom filters serve this function by allowing an SPV node to specify a search pattern for
transactions that can be tuned toward precision or privacy. A more specific bloom filter will
produce accurate results, but at the expense of revealing what addresses are used in the user’s
wallet. A less specific bloom filter will produce more data about more transactions, many irrelevant
to the node, but will allow the node to maintain better privacy.

An SPV node will initialize a bloom filter as "empty" and in that state the bloom filter will not match
any patterns. The SPV node will then make a list of all the addresses in its wallet and create a
search pattern matching the transaction output that corresponds to each address. Usually, the
search pattern is a pay-to-public-key-hash script that is the expected locking script that will be
present in any transaction paying to the public-key-hash (address). If the SPV node is tracking the
balance of a P2SH address, the search pattern will be a pay-to-script-hash script, instead. The SPV
node then adds each of the search patterns to the bloom filter, so that the bloom filter can recognize
the search pattern if it is present in a transaction. Finally, the bloom filter is sent to the peer and the
peer uses it to match transactions for transmission to the SPV node.

Bloom filters are implemented as a variable-size array of N binary digits (a bit field) and a variable
number of M hash functions. The hash functions are designed to always produce an output that is
between 1 and N, corresponding to the array of binary digits. The hash functions are generated
deterministically, so that any node implementing a bloom filter will always use the same hash
functions and get the same results for a specific input. By choosing different length (N) bloom filters
and a different number (M) of hash functions, the bloom filter can be tuned, varying the level of
accuracy and therefore privacy.

In An example of a simplistic bloom filter, with a 16-bit field and three hash functions, we use a
very small array of 16 bits and a set of three hash functions to demonstrate how bloom filters work.
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Figure 46. An example of a simplistic bloom filter, with a 16-bit field and three hash functions

The bloom filter is initialized so that the array of bits is all zeros. To add a pattern to the bloom
filter, the pattern is hashed by each hash function in turn. Applying the first hash function to the
input results in a number between 1 and N. The corresponding bit in the array (indexed from 1 to
N) is found and set to 1, thereby recording the output of the hash function. Then, the next hash
function is used to set another bit and so on. Once all M hash functions have been applied, the
search pattern will be "recorded" in the bloom filter as M bits that have been changed from 0 to 1.

Adding a pattern "A" to our simple bloom filter is an example of adding a pattern "A" to the simple
bloom filter shown in An example of a simplistic bloom filter, with a 16-bit field and three hash
functions.

Adding a second pattern is as simple as repeating this process. The pattern is hashed by each hash
function in turn and the result is recorded by setting the bits to 1. Note that as a bloom filter is filled
with more patterns, a hash function result might coincide with a bit that is already set to 1, in
which case the bit is not changed. In essence, as more patterns record on overlapping bits, the
bloom filter starts to become saturated with more bits set to 1 and the accuracy of the filter
decreases. This is why the filter is a probabilistic data structure—it gets less accurate as more
patterns are added. The accuracy depends on the number of patterns added versus the size of the
bit array (N) and number of hash functions (M). A larger bit array and more hash functions can
record more patterns with higher accuracy. A smaller bit array or fewer hash functions will record
fewer patterns and produce less accuracy.
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Figure 47. Adding a pattern "A" to our simple bloom filter

Adding a second pattern "B" to our simple bloom filter is an example of adding a second pattern "B"
to the simple bloom filter.

Figure 48. Adding a second pattern "B" to our simple bloom filter

To test if a pattern is part of a bloom filter, the pattern is hashed by each hash function and the
resulting bit pattern is tested against the bit array. If all the bits indexed by the hash functions are
set to 1, then the pattern is probably recorded in the bloom filter. Because the bits may be set
because of overlap from multiple patterns, the answer is not certain, but is rather probabilistic. In
simple terms, a bloom filter positive match is a "Maybe, Yes."
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Testing the existence of pattern "X" in the bloom filter. The result is probabilistic positive match,
meaning "Maybe." is an example of testing the existence of pattern "X" in the simple bloom filter.
The corresponding bits are set to 1, so the pattern is probably a match.

Figure 49. Testing the existence of pattern "X" in the bloom filter. The result is probabilistic positive match,
meaning "Maybe."

On the contrary, if a pattern is tested against the bloom filter and any one of the bits is set to 0, this
proves that the pattern was not recorded in the bloom filter. A negative result is not a probability, it
is a certainty. In simple terms, a negative match on a bloom filter is a "Definitely Not!"

Testing the existence of pattern "Y" in the bloom filter. The result is a definitive negative match,
meaning "Definitely Not!" is an example of testing the existence of pattern "Y" in the simple bloom
filter. One of the corresponding bits is set to 0, so the pattern is definitely not a match.
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Figure 50. Testing the existence of pattern "Y" in the bloom filter. The result is a definitive negative match,
meaning "Definitely Not!"

Bitcoin’s implementation of bloom filters is described in Bitcoin Improvement Proposal 37
(BIP0037). See Bitcoin Improvement Proposals or visit GitHub.

Bloom Filters and Inventory Updates
Bloom filters are used to filter the transactions (and blocks containing them) that an SPV node
receives from its peers. SPV nodes will create a filter that matches only the addresses held in the
SPV node’s wallet. The SPV node will then send a filterload message to the peer, containing the
bloom filter to use on the connection. After a filter is established, the peer will then test each
transaction’s outputs against the bloom filter. Only transactions that match the filter are sent to the
node.

In response to a getdata message from the node, peers will send a merkleblock message that
contains only block headers for blocks matching the filter and a merkle path (see Merkle Trees) for
each matching transaction. The peer will then also send tx messages containing the transactions
matched by the filter.

The node setting the bloom filter can interactively add patterns to the filter by sending a filteradd
message. To clear the bloom filter, the node can send a filterclear message. Because it is not possible
to remove a pattern from a bloom filter, a node has to clear and resend a new bloom filter if a
pattern is no longer desired.

Transaction Pools
Almost every node on the bitcoin network maintains a temporary list of unconfirmed transactions
called the memory pool, mempool, or transaction pool. Nodes use this pool to keep track of
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transactions that are known to the network but are not yet included in the blockchain. For example,
a node that holds a user’s wallet will use the transaction pool to track incoming payments to the
user’s wallet that have been received on the network but are not yet confirmed.

As transactions are received and verified, they are added to the transaction pool and relayed to the
neighboring nodes to propagate on the network.

Some node implementations also maintain a separate pool of orphaned transactions. If a
transaction’s inputs refer to a transaction that is not yet known, such as a missing parent, the
orphan transaction will be stored temporarily in the orphan pool until the parent transaction
arrives.

When a transaction is added to the transaction pool, the orphan pool is checked for any orphans
that reference this transaction’s outputs (its children). Any matching orphans are then validated. If
valid, they are removed from the orphan pool and added to the transaction pool, completing the
chain that started with the parent transaction. In light of the newly added transaction, which is no
longer an orphan, the process is repeated recursively looking for any further descendants, until no
more descendants are found. Through this process, the arrival of a parent transaction triggers a
cascade reconstruction of an entire chain of interdependent transactions by re-uniting the orphans
with their parents all the way down the chain.

Both the transaction pool and orphan pool (where implemented) are stored in local memory and
are not saved on persistent storage; rather, they are dynamically populated from incoming network
messages. When a node starts, both pools are empty and are gradually populated with new
transactions received on the network.

Some implementations of the bitcoin client also maintain a UTXO database or UTXO pool, which is
the set of all unspent outputs on the blockchain. Although the name "UTXO pool" sounds similar to
the transaction pool, it represents a different set of data. Unlike the transaction and orphan pools,
the UTXO pool is not initialized empty but instead contains millions of entries of unspent
transaction outputs, including some dating back to 2009. The UTXO pool may be housed in local
memory or as an indexed database table on persistent storage.

Whereas the transaction and orphan pools represent a single node’s local perspective and might
vary significantly from node to node depending upon when the node was started or restarted, the
UTXO pool represents the emergent consensus of the network and therefore will vary little between
nodes. Furthermore, the transaction and orphan pools only contain unconfirmed transactions,
while the UTXO pool only contains confirmed outputs.

Alert Messages
Alert messages are a seldom used function, but are nevertheless implemented in most nodes. Alert
messages are bitcoin’s "emergency broadcast system," a means by which the core bitcoin
developers can send an emergency text message to all bitcoin nodes. This feature is implemented to
allow the core developer team to notify all bitcoin users of a serious problem in the bitcoin
network, such as a critical bug that requires user action. The alert system has only been used a
handful of times, most notably in early 2013 when a critical database bug caused a multiblock fork
to occur in the bitcoin blockchain.
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Alert messages are propagated by the alert message. The alert message contains several fields,
including:

ID

An alert identified so that duplicate alerts can be detected

Expiration

A time after which the alert expires

RelayUntil

A time after which the alert should not be relayed

MinVer, MaxVer

The range of bitcoin protocol versions that this alert applies to

subVer

The client software version that this alert applies to

Priority

An alert priority level, currently unused

Alerts are cryptographically signed by a public key. The corresponding private key is held by a few
select members of the core development team. The digital signature ensures that fake alerts will not
be propagated on the network.

Each node receiving this alert message will verify it, check for expiration, and propagate it to all its
peers, thus ensuring rapid propagation across the entire network. In addition to propagating the
alert, the nodes might implement a user interface function to present the alert to the user.

In the Bitcoin Core client, the alert is configured with the command-line option -alertnotify, which
specifies a command to run when an alert is received. The alert message is passed as a parameter
to the alertnotify command. Most commonly, the alertnotify command is set to generate an email
message to the administrator of the node, containing the alert message. The alert is also displayed
as a pop-up dialog in the graphical user interface (bitcoin-Qt) if it is running.

Other implementations of the bitcoin protocol might handle the alert in different ways. Many
hardware-embedded bitcoin mining systems do not implement the alert message function because
they have no user interface. It is strongly recommended that miners running such mining systems
subscribe to alerts via a mining pool operator or by running a lightweight node just for alert
purposes.

The Blockchain

Introduction
The blockchain data structure is an ordered, back-linked list of blocks of transactions. The
blockchain can be stored as a flat file, or in a simple database. The Bitcoin Core client stores the
blockchain metadata using Google’s LevelDB database. Blocks are linked "back," each referring to
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the previous block in the chain. The blockchain is often visualized as a vertical stack, with blocks
layered on top of each other and the first block serving as the foundation of the stack. The
visualization of blocks stacked on top of each other results in the use of terms such as "height" to
refer to the distance from the first block, and "top" or "tip" to refer to the most recently added block.

Each block within the blockchain is identified by a hash, generated using the SHA256 cryptographic
hash algorithm on the header of the block. Each block also references a previous block, known as
the parent block, through the "previous block hash" field in the block header. In other words, each
block contains the hash of its parent inside its own header. The sequence of hashes linking each
block to its parent creates a chain going back all the way to the first block ever created, known as
the genesis block.

Although a block has just one parent, it can temporarily have multiple children. Each of the
children refers to the same block as its parent and contains the same (parent) hash in the "previous
block hash" field. Multiple children arise during a blockchain "fork," a temporary situation that
occurs when different blocks are discovered almost simultaneously by different miners (see
Blockchain Forks). Eventually, only one child block becomes part of the blockchain and the "fork" is
resolved. Even though a block may have more than one child, each block can have only one parent.
This is because a block has one single "previous block hash" field referencing its single parent.

The "previous block hash" field is inside the block header and thereby affects the current block’s
hash. The child’s own identity changes if the parent’s identity changes. When the parent is modified
in any way, the parent’s hash changes. The parent’s changed hash necessitates a change in the
"previous block hash" pointer of the child. This in turn causes the child’s hash to change, which
requires a change in the pointer of the grandchild, which in turn changes the grandchild, and so on.
This cascade effect ensures that once a block has many generations following it, it cannot be
changed without forcing a recalculation of all subsequent blocks. Because such a recalculation
would require enormous computation, the existence of a long chain of blocks makes the
blockchain’s deep history immutable, which is a key feature of bitcoin’s security.

One way to think about the blockchain is like layers in a geological formation, or glacier core
sample. The surface layers might change with the seasons, or even be blown away before they have
time to settle. But once you go a few inches deep, geological layers become more and more stable.
By the time you look a few hundred feet down, you are looking at a snapshot of the past that has
remained undisturbed for millions of years. In the blockchain, the most recent few blocks might be
revised if there is a chain recalculation due to a fork. The top six blocks are like a few inches of
topsoil. But once you go more deeply into the blockchain, beyond six blocks, blocks are less and less
likely to change. After 100 blocks back there is so much stability that the coinbase transaction—the
transaction containing newly mined bitcoins—can be spent. A few thousand blocks back (a month)
and the blockchain is settled history, for all practical purposes. While the protocol always allows a
chain to be undone by a longer chain and while the possibility of any block being reversed always
exists, the probability of such an event decreases as time passes until it becomes infinitesimal.

Structure of a Block
A block is a container data structure that aggregates transactions for inclusion in the public ledger,
the blockchain. The block is made of a header, containing metadata, followed by a long list of
transactions that make up the bulk of its size. The block header is 80 bytes, whereas the average
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transaction is at least 250 bytes and the average block contains more than 500 transactions. A
complete block, with all transactions, is therefore 1,000 times larger than the block header. The
structure of a block describes the structure of a block.

Table 20. The structure of a block

Size Field Description

4 bytes Block Size The size of the block, in bytes,
following this field

80 bytes Block Header Several fields form the block
header

1-9 bytes (VarInt) Transaction Counter How many transactions follow

Variable Transactions The transactions recorded in
this block

Block Header
The block header consists of three sets of block metadata. First, there is a reference to a previous
block hash, which connects this block to the previous block in the blockchain. The second set of
metadata, namely the difficulty, timestamp, and nonce, relate to the mining competition, as detailed
in Mining and Consensus. The third piece of metadata is the merkle tree root, a data structure used
to efficiently summarize all the transactions in the block. The structure of the block header
describes the structure of a block header.

Table 21. The structure of the block header

Size Field Description

4 bytes Version A version number to track
software/protocol upgrades

32 bytes Previous Block Hash A reference to the hash of the
previous (parent) block in the
chain

32 bytes Merkle Root A hash of the root of the merkle
tree of this block’s transactions

4 bytes Timestamp The approximate creation time
of this block (seconds from Unix
Epoch)

4 bytes Difficulty Target The proof-of-work algorithm
difficulty target for this block

4 bytes Nonce A counter used for the proof-of-
work algorithm

The nonce, difficulty target, and timestamp are used in the mining process and will be discussed in
more detail in Mining and Consensus.
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Block Identifiers: Block Header Hash and Block Height
The primary identifier of a block is its cryptographic hash, a digital fingerprint, made by hashing
the block header twice through the SHA256 algorithm. The resulting 32-byte hash is called the block
hash but is more accurately the block header hash, because only the block header is used to
compute it. For example, 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
is the block hash of the first bitcoin block ever created. The block hash identifies a block uniquely
and unambiguously and can be independently derived by any node by simply hashing the block
header.

Note that the block hash is not actually included inside the block’s data structure, neither when the
block is transmitted on the network, nor when it is stored on a node’s persistence storage as part of
the blockchain. Instead, the block’s hash is computed by each node as the block is received from the
network. The block hash might be stored in a separate database table as part of the block’s
metadata, to facilitate indexing and faster retrieval of blocks from disk.

A second way to identify a block is by its position in the blockchain, called the block height. The first
block ever created is at block height 0 (zero) and is the same block that was previously referenced
by the following block hash
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f. A block can thus be
identified two ways: by referencing the block hash or by referencing the block height. Each
subsequent block added "on top" of that first block is one position "higher" in the blockchain, like
boxes stacked one on top of the other. The block height on January 1, 2014, was approximately
278,000, meaning there were 278,000 blocks stacked on top of the first block created in January
2009.

Unlike the block hash, the block height is not a unique identifier. Although a single block will
always have a specific and invariant block height, the reverse is not true—the block height does not
always identify a single block. Two or more blocks might have the same block height, competing for
the same position in the blockchain. This scenario is discussed in detail in the section Blockchain
Forks. The block height is also not a part of the block’s data structure; it is not stored within the
block. Each node dynamically identifies a block’s position (height) in the blockchain when it is
received from the bitcoin network. The block height might also be stored as metadata in an indexed
database table for faster retrieval.

TIP

A block’s block hash always identifies a single block uniquely. A block also always has
a specific block height. However, it is not always the case that a specific block height
can identify a single block. Rather, two or more blocks might compete for a single
position in the blockchain.

The Genesis Block
The first block in the blockchain is called the genesis block and was created in 2009. It is the
common ancestor of all the blocks in the blockchain, meaning that if you start at any block and
follow the chain backward in time, you will eventually arrive at the genesis block.

Every node always starts with a blockchain of at least one block because the genesis block is
statically encoded within the bitcoin client software, such that it cannot be altered. Every node
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always "knows" the genesis block’s hash and structure, the fixed time it was created, and even the
single transaction within. Thus, every node has the starting point for the blockchain, a secure "root"
from which to build a trusted blockchain.

See the statically encoded genesis block inside the Bitcoin Core client, in chainparams.cpp.

The following identifier hash belongs to the genesis block:

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

You can search for that block hash in any block explorer website, such as blockchain.info, and you
will find a page describing the contents of this block, with a URL containing that hash:

https://blockchain.info/block/
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

https://blockexplorer.com/block/
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Using the Bitcoin Core reference client on the command line:

$ bitcoin-cli getblock
000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

{
    "hash" : "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f",
    "confirmations" : 308321,
    "size" : 285,
    "height" : 0,
    "version" : 1,
    "merkleroot" : "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b",
    "tx" : [
        "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b"
    ],
    "time" : 1231006505,
    "nonce" : 2083236893,
    "bits" : "1d00ffff",
    "difficulty" : 1.00000000,
    "nextblockhash" :
"00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048"
}

The genesis block contains a hidden message within it. The coinbase transaction input contains the
text "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks." This message was
intended to offer proof of the earliest date this block was created, by referencing the headline of the
British newspaper The Times. It also serves as a tongue-in-cheek reminder of the importance of an
independent monetary system, with bitcoin’s launch occurring at the same time as an
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unprecedented worldwide monetary crisis. The message was embedded in the first block by Satoshi
Nakamoto, bitcoin’s creator.

Linking Blocks in the Blockchain
Bitcoin full nodes maintain a local copy of the blockchain, starting at the genesis block. The local
copy of the blockchain is constantly updated as new blocks are found and used to extend the chain.
As a node receives incoming blocks from the network, it will validate these blocks and then link
them to the existing blockchain. To establish a link, a node will examine the incoming block header
and look for the "previous block hash."

Let’s assume, for example, that a node has 277,314 blocks in the local copy of the blockchain. The
last block the node knows about is block 277,314, with a block header hash of
00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249.

The bitcoin node then receives a new block from the network, which it parses as follows:

{
    "size" : 43560,
    "version" : 2,
    "previousblockhash" :
        "00000000000000027e7ba6fe7bad39faf3b5a83daed765f05f7d1b71a1632249",
    "merkleroot" :
        "5e049f4030e0ab2debb92378f53c0a6e09548aea083f3ab25e1d94ea1155e29d",
    "time" : 1388185038,
    "difficulty" : 1180923195.25802612,
    "nonce" : 4215469401,
    "tx" : [
        "257e7497fb8bc68421eb2c7b699dbab234831600e7352f0d9e6522c7cf3f6c77",

 #[... many more transactions omitted ...]

        "05cfd38f6ae6aa83674cc99e4d75a1458c165b7ab84725eda41d018a09176634"
    ]
}

Looking at this new block, the node finds the previousblockhash field, which contains the hash of
its parent block. It is a hash known to the node, that of the last block on the chain at height 277,314.
Therefore, this new block is a child of the last block on the chain and extends the existing
blockchain. The node adds this new block to the end of the chain, making the blockchain longer
with a new height of 277,315. Blocks linked in a chain, by reference to the previous block header
hash shows the chain of three blocks, linked by references in the previousblockhash field.

Merkle Trees
Each block in the bitcoin blockchain contains a summary of all the transactions in the block, using a
merkle tree.
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A merkle tree, also known as a binary hash tree, is a data structure used for efficiently summarizing
and verifying the integrity of large sets of data. Merkle trees are binary trees containing
cryptographic hashes. The term "tree" is used in computer science to describe a branching data
structure, but these trees are usually displayed upside down with the "root" at the top and the
"leaves" at the bottom of a diagram, as you will see in the examples that follow.
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Figure 51. Blocks linked in a chain, by reference to the previous block header hash
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Merkle trees are used in bitcoin to summarize all the transactions in a block, producing an overall
digital fingerprint of the entire set of transactions, providing a very efficient process to verify
whether a transaction is included in a block. A Merkle tree is constructed by recursively hashing
pairs of nodes until there is only one hash, called the root, or merkle root. The cryptographic hash
algorithm used in bitcoin’s merkle trees is SHA256 applied twice, also known as double-SHA256.

When N data elements are hashed and summarized in a merkle tree, you can check to see if any
one data element is included in the tree with at most 2*log~2~(N) calculations, making this a very
efficient data structure.

The merkle tree is constructed bottom-up. In the following example, we start with four
transactions, A, B, C and D, which form the leaves of the Merkle tree, as shown in Calculating the
nodes in a merkle tree. The transactions are not stored in the merkle tree; rather, their data is
hashed and the resulting hash is stored in each leaf node as HA, HB, HC, and HD:

H~A~ = SHA256(SHA256(Transaction A))

Consecutive pairs of leaf nodes are then summarized in a parent node, by concatenating the two
hashes and hashing them together. For example, to construct the parent node HAB, the two 32-byte
hashes of the children are concatenated to create a 64-byte string. That string is then double-hashed
to produce the parent node’s hash:

H~AB~ = SHA256(SHA256(H~A~ + H~B~))

The process continues until there is only one node at the top, the node known as the Merkle root.
That 32-byte hash is stored in the block header and summarizes all the data in all four transactions.

Figure 52. Calculating the nodes in a merkle tree

Because the merkle tree is a binary tree, it needs an even number of leaf nodes. If there is an odd
number of transactions to summarize, the last transaction hash will be duplicated to create an even
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number of leaf nodes, also known as a balanced tree. This is shown in Duplicating one data element
achieves an even number of data elements, where transaction C is duplicated.

Figure 53. Duplicating one data element achieves an even number of data elements

The same method for constructing a tree from four transactions can be generalized to construct
trees of any size. In bitcoin it is common to have several hundred to more than a thousand
transactions in a single block, which are summarized in exactly the same way, producing just 32
bytes of data as the single merkle root. In A merkle tree summarizing many data elements, you will
see a tree built from 16 transactions. Note that although the root looks bigger than the leaf nodes in
the diagram, it is the exact same size, just 32 bytes. Whether there is one transaction or a hundred
thousand transactions in the block, the merkle root always summarizes them into 32 bytes.

To prove that a specific transaction is included in a block, a node only needs to produce log~2~(N)
32-byte hashes, constituting an authentication path or merkle path connecting the specific
transaction to the root of the tree. This is especially important as the number of transactions
increases, because the base-2 logarithm of the number of transactions increases much more slowly.
This allows bitcoin nodes to efficiently produce paths of 10 or 12 hashes (320–384 bytes), which can
provide proof of a single transaction out of more than a thousand transactions in a megabyte-size
block.
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Figure 54. A merkle tree summarizing many data elements

In A merkle path used to prove inclusion of a data element, a node can prove that a transaction K is
included in the block by producing a merkle path that is only four 32-byte hashes long (128 bytes
total). The path consists of the four hashes (noted in blue in A merkle path used to prove inclusion
of a data element) HL, HIJ, HMNOP and HABCDEFGH. With those four hashes provided as an authentication
path, any node can prove that HK (noted in green in the diagram) is included in the merkle root by
computing four additional pair-wise hashes HKL, HIJKL, HIJKLMNOP, and the merkle tree root (outlined in
a dotted line in the diagram).

Figure 55. A merkle path used to prove inclusion of a data element

The code in Building a merkle tree demonstrates the process of creating a merkle tree from the leaf-
node hashes up to the root, using the libbitcoin library for some helper functions.

Example 16. Building a merkle tree

#include <bitcoin/bitcoin.hpp>

bc::hash_digest create_merkle(bc::hash_list& merkle)
{
    // Stop if hash list is empty.
    if (merkle.empty())
        return bc::null_hash;
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    else if (merkle.size() == 1)
        return merkle[0];

    // While there is more than 1 hash in the list, keep looping...
    while (merkle.size() > 1)
    {
        // If number of hashes is odd, duplicate last hash in the list.
        if (merkle.size() % 2 != 0)
            merkle.push_back(merkle.back());
        // List size is now even.
        assert(merkle.size() % 2 == 0);

        // New hash list.
        bc::hash_list new_merkle;
        // Loop through hashes 2 at a time.
        for (auto it = merkle.begin(); it != merkle.end(); it += 2)
        {
            // Join both current hashes together (concatenate).
            bc::data_chunk concat_data(bc::hash_size * 2);
            auto concat = bc::make_serializer(concat_data.begin());
            concat.write_hash(*it);
            concat.write_hash(*(it + 1));
            assert(concat.iterator() == concat_data.end());
            // Hash both of the hashes.
            bc::hash_digest new_root = bc::bitcoin_hash(concat_data);
            // Add this to the new list.
            new_merkle.push_back(new_root);
        }
        // This is the new list.
        merkle = new_merkle;

        // DEBUG output -------------------------------------
        std::cout << "Current merkle hash list:" << std::endl;
        for (const auto& hash: merkle)
            std::cout << "  " << bc::encode_hex(hash) << std::endl;
        std::cout << std::endl;
        // --------------------------------------------------
    }
    // Finally we end up with a single item.
    return merkle[0];
}

int main()
{
    // Replace these hashes with ones from a block to reproduce the same merkle
root.
    bc::hash_list tx_hashes{{
 
bc::hash_literal("0000000000000000000000000000000000000000000000000000000000000000
"),
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bc::hash_literal("0000000000000000000000000000000000000000000000000000000000000011
"),
 
bc::hash_literal("0000000000000000000000000000000000000000000000000000000000000022
"),
    }};
    const bc::hash_digest merkle_root = create_merkle(tx_hashes);
    std::cout << "Result: " << bc::encode_hex(merkle_root) << std::endl;
    return 0;
}

Compiling and running the merkle example code shows the result of compiling and running the
merkle code.

Example 17. Compiling and running the merkle example code

$ # Compile the merkle.cpp code
$ g++ -o merkle merkle.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the merkle executable
$ ./merkle
Current merkle hash list:
  32650049a0418e4380db0af81788635d8b65424d397170b8499cdc28c4d27006
  30861db96905c8dc8b99398ca1cd5bd5b84ac3264a4e1b3e65afa1bcee7540c4

Current merkle hash list:
  d47780c084bad3830bcdaf6eace035e4c6cbf646d103795d22104fb105014ba3

Result: d47780c084bad3830bcdaf6eace035e4c6cbf646d103795d22104fb105014ba3

The efficiency of merkle trees becomes obvious as the scale increases. Merkle tree efficiency shows
the amount of data that needs to be exchanged as a merkle path to prove that a transaction is part
of a block.

Table 22. Merkle tree efficiency

Number of
transactions

Approx. size of block Path size (hashes) Path size (bytes)

16 transactions 4 kilobytes 4 hashes 128 bytes

512 transactions 128 kilobytes 9 hashes 288 bytes

2048 transactions 512 kilobytes 11 hashes 352 bytes

65,535 transactions 16 megabytes 16 hashes 512 bytes

As you can see from the table, while the block size increases rapidly, from 4 KB with 16 transactions
to a block size of 16 MB to fit 65,535 transactions, the merkle path required to prove the inclusion of
a transaction increases much more slowly, from 128 bytes to only 512 bytes. With merkle trees, a
node can download just the block headers (80 bytes per block) and still be able to identify a
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transaction’s inclusion in a block by retrieving a small merkle path from a full node, without
storing or transmitting the vast majority of the blockchain, which might be several gigabytes in size.
Nodes that do not maintain a full blockchain, called simplified payment verification (SPV nodes),
use merkle paths to verify transactions without downloading full blocks.

Merkle Trees and Simplified Payment Verification
(SPV)
Merkle trees are used extensively by SPV nodes. SPV nodes don’t have all transactions and do not
download full blocks, just block headers. In order to verify that a transaction is included in a block,
without having to download all the transactions in the block, they use an authentication path, or
merkle path.

Consider, for example, an SPV node that is interested in incoming payments to an address
contained in its wallet. The SPV node will establish a bloom filter on its connections to peers to limit
the transactions received to only those containing addresses of interest. When a peer sees a
transaction that matches the bloom filter, it will send that block using a merkleblock message. The
merkleblock message contains the block header as well as a merkle path that links the transaction
of interest to the merkle root in the block. The SPV node can use this merkle path to connect the
transaction to the block and verify that the transaction is included in the block. The SPV node also
uses the block header to link the block to the rest of the blockchain. The combination of these two
links, between the transaction and block, and between the block and blockchain, proves that the
transaction is recorded in the blockchain. All in all, the SPV node will have received less than a
kilobyte of data for the block header and merkle path, an amount of data that is more than a
thousand times less than a full block (about 1 megabyte currently).

Mining and Consensus

Introduction
Mining is the process by which new bitcoin is added to the money supply. Mining also serves to
secure the bitcoin system against fraudulent transactions or transactions spending the same
amount of bitcoin more than once, known as a double-spend. Miners provide processing power to
the bitcoin network in exchange for the opportunity to be rewarded bitcoin.

Miners validate new transactions and record them on the global ledger. A new block, containing
transactions that occurred since the last block, is "mined" every 10 minutes on average, thereby
adding those transactions to the blockchain. Transactions that become part of a block and added to
the blockchain are considered "confirmed," which allows the new owners of bitcoin to spend the
bitcoin they received in those transactions.

Miners receive two types of rewards for mining: new coins created with each new block, and
transaction fees from all the transactions included in the block. To earn this reward, the miners
compete to solve a difficult mathematical problem based on a cryptographic hash algorithm. The
solution to the problem, called the proof of work, is included in the new block and acts as proof that
the miner expended significant computing effort. The competition to solve the proof-of-work
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algorithm to earn reward and the right to record transactions on the blockchain is the basis for
bitcoin’s security model.

The process of new coin generation is called mining because the reward is designed to simulate
diminishing returns, just like mining for precious metals. Bitcoin’s money supply is created through
mining, similar to how a central bank issues new money by printing bank notes. The amount of
newly created bitcoin a miner can add to a block decreases approximately every four years (or
precisely every 210,000 blocks). It started at 50 bitcoin per block in January of 2009 and halved to 25
bitcoin per block in November of 2012. It will halve again to 12.5 bitcoin per block sometime in
2016. Based on this formula, bitcoin mining rewards decrease exponentially until approximately
the year 2140, when all bitcoin (20.99999998 million) will have been issued. After 2140, no new
bitcoins will be issued.

Bitcoin miners also earn fees from transactions. Every transaction may include a transaction fee, in
the form of a surplus of bitcoin between the transaction’s inputs and outputs. The winning bitcoin
miner gets to "keep the change" on the transactions included in the winning block. Today, the fees
represent 0.5% or less of a bitcoin miner’s income, the vast majority coming from the newly minted
bitcoins. However, as the reward decreases over time and the number of transactions per block
increases, a greater proportion of bitcoin mining earnings will come from fees. After 2140, all
bitcoin miner earnings will be in the form of transaction fees.

The word "mining" is somewhat misleading. By evoking the extraction of precious metals, it focuses
our attention on the reward for mining, the new bitcoins in each block. Although mining is
incentivized by this reward, the primary purpose of mining is not the reward or the generation of
new coins. If you view mining only as the process by which coins are created, you are mistaking the
means (incentives) as a goal of the process. Mining is the main process of the decentralized
clearinghouse, by which transactions are validated and cleared. Mining secures the bitcoin system
and enables the emergence of network-wide consensus without a central authority.

Mining is the invention that makes bitcoin special, a decentralized security mechanism that is the
basis for peer-to-peer digital cash. The reward of newly minted coins and transaction fees is an
incentive scheme that aligns the actions of miners with the security of the network, while
simultaneously implementing the monetary supply.

In this chapter, we will first examine mining as a monetary supply mechanism and then look at the
most important function of mining: the decentralized emergent consensus mechanism that
underpins bitcoin’s security.

Bitcoin Economics and Currency Creation

Bitcoins are "minted" during the creation of each block at a fixed and diminishing rate. Each block,
generated on average every 10 minutes, contains entirely new bitcoins, created from nothing.
Every 210,000 blocks, or approximately every four years, the currency issuance rate is decreased by
50%. For the first four years of operation of the network, each block contained 50 new bitcoins.

In November 2012, the new bitcoin issuance rate was decreased to 25 bitcoins per block and it will
decrease again to 12.5 bitcoins at block 420,000, which will be mined sometime in 2016. The rate of
new coins decreases like this exponentially over 64 "halvings" until block 13,230,000 (mined
approximately in year 2137), when it reaches the minimum currency unit of 1 satoshi. Finally, after
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13.44 million blocks, in approximately 2140, almost 2,099,999,997,690,000 satoshis, or almost 21
million bitcoins, will be issued. Thereafter, blocks will contain no new bitcoins, and miners will be
rewarded solely through the transaction fees. Supply of bitcoin currency over time based on a
geometrically decreasing issuance rate shows the total bitcoin in circulation over time, as the
issuance of currency decreases.

Figure 56. Supply of bitcoin currency over time based on a geometrically decreasing issuance rate

NOTE

The maximum number of coins mined is the upper limit of possible mining rewards
for bitcoin. In practice, a miner may intentionally mine a block taking less than the
full reward. Such blocks have already been mined and more may be mined in the
future, resulting in a lower total issuance of the currency.

In the example code in A script for calculating how much total bitcoin will be issued, we calculate
the total amount of bitcoin that will be issued.
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Example 18. A script for calculating how much total bitcoin will be issued

# Original block reward for miners was 50 BTC
start_block_reward = 50
# 210000 is around every 4 years with a 10 minute block interval
reward_interval = 210000

def max_money():
    # 50 BTC = 50 0000 0000 Satoshis
    current_reward = 50 * 10**8
    total = 0
    while current_reward > 0:
        total += reward_interval * current_reward
        current_reward /= 2
    return total

print "Total BTC to ever be created:", max_money(), "Satoshis"

Running the max_money.py script shows the output produced by running this script.

Example 19. Running the max_money.py script

$ python max_money.py
Total BTC to ever be created: 2099999997690000 Satoshis

The finite and diminishing issuance creates a fixed monetary supply that resists inflation. Unlike a
fiat currency, which can be printed in infinite numbers by a central bank, bitcoin can never be
inflated by printing.
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Deflationary Money

The most important and debated consequence of a fixed and diminishing monetary issuance
is that the currency will tend to be inherently deflationary. Deflation is the phenomenon of
appreciation of value due to a mismatch in supply and demand that drives up the value (and
exchange rate) of a currency. The opposite of inflation, price deflation means that the money
has more purchasing power over time.

Many economists argue that a deflationary economy is a disaster that should be avoided at all
costs. That is because in a period of rapid deflation, people tend to hoard money instead of
spending it, hoping that prices will fall. Such a phenomenon unfolded during Japan’s "Lost
Decade," when a complete collapse of demand pushed the currency into a deflationary spiral.

Bitcoin experts argue that deflation is not bad per se. Rather, deflation is associated with a
collapse in demand because that is the only example of deflation we have to study. In a fiat
currency with the possibility of unlimited printing, it is very difficult to enter a deflationary
spiral unless there is a complete collapse in demand and an unwillingness to print money.
Deflation in bitcoin is not caused by a collapse in demand, but by a predictably constrained
supply.

In practice, it has become evident that the hoarding instinct caused by a deflationary
currency can be overcome by discounting from vendors, until the discount overcomes the
hoarding instinct of the buyer. Because the seller is also motivated to hoard, the discount
becomes the equilibrium price at which the two hoarding instincts are matched. With
discounts of 30% on the bitcoin price, most bitcoin retailers are not experiencing difficulty
overcoming the hoarding instinct and generating revenue. It remains to be seen whether the
deflationary aspect of the currency is really a problem when it is not driven by rapid
economic retraction.

Decentralized Consensus
In the previous chapter we looked at the blockchain, the global public ledger (list) of all
transactions, which everyone in the bitcoin network accepts as the authoritative record of
ownership.

But how can everyone in the network agree on a single universal "truth" about who owns what,
without having to trust anyone? All traditional payment systems depend on a trust model that has a
central authority providing a clearinghouse service, basically verifying and clearing all
transactions. Bitcoin has no central authority, yet somehow every full node has a complete copy of a
public ledger that it can trust as the authoritative record. The blockchain is not created by a central
authority, but is assembled independently by every node in the network. Somehow, every node in
the network, acting on information transmitted across insecure network connections, can arrive at
the same conclusion and assemble a copy of the same public ledger as everyone else. This chapter
examines the process by which the bitcoin network achieves global consensus without central
authority.

Satoshi Nakamoto’s main invention is the decentralized mechanism for emergent consensus.
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Emergent, because consensus is not achieved explicitly—there is no election or fixed moment when
consensus occurs. Instead, consensus is an emergent artifact of the asynchronous interaction of
thousands of independent nodes, all following simple rules. All the properties of bitcoin, including
currency, transactions, payments, and the security model that does not depend on central authority
or trust, derive from this invention.

Bitcoin’s decentralized consensus emerges from the interplay of four processes that occur
independently on nodes across the network:

• Independent verification of each transaction, by every full node, based on a comprehensive list
of criteria

• Independent aggregation of those transactions into new blocks by mining nodes, coupled with
demonstrated computation through a proof-of-work algorithm

• Independent verification of the new blocks by every node and assembly into a chain

• Independent selection, by every node, of the chain with the most cumulative computation
demonstrated through proof of work

In the next few sections we will examine these processes and how they interact to create the
emergent property of network-wide consensus that allows any bitcoin node to assemble its own
copy of the authoritative, trusted, public, global ledger.

Independent Verification of Transactions
In Transactions, we saw how wallet software creates transactions by collecting UTXO, providing the
appropriate unlocking scripts, and then constructing new outputs assigned to a new owner. The
resulting transaction is then sent to the neighboring nodes in the bitcoin network so that it can be
propagated across the entire bitcoin network.

However, before forwarding transactions to its neighbors, every bitcoin node that receives a
transaction will first verify the transaction. This ensures that only valid transactions are
propagated across the network, while invalid transactions are discarded at the first node that
encounters them.

Each node verifies every transaction against a long checklist of criteria:

• The transaction’s syntax and data structure must be correct.

• Neither lists of inputs or outputs are empty.

• The transaction size in bytes is less than MAX_BLOCK_SIZE.

• Each output value, as well as the total, must be within the allowed range of values (less than
21m coins, more than 0).

• None of the inputs have hash=0, N=–1 (coinbase transactions should not be relayed).

• nLockTime is less than or equal to INT_MAX.

• The transaction size in bytes is greater than or equal to 100.

• The number of signature operations contained in the transaction is less than the signature
operation limit.
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• The unlocking script (scriptSig) can only push numbers on the stack, and the locking script
(scriptPubkey) must match isStandard forms (this rejects "nonstandard" transactions).

• A matching transaction in the pool, or in a block in the main branch, must exist.

• For each input, if the referenced output exists in any other transaction in the pool, the
transaction must be rejected.

• For each input, look in the main branch and the transaction pool to find the referenced output
transaction. If the output transaction is missing for any input, this will be an orphan
transaction. Add to the orphan transactions pool, if a matching transaction is not already in the
pool.

• For each input, if the referenced output transaction is a coinbase output, it must have at least
COINBASE_MATURITY (100) confirmations.

• For each input, the referenced output must exist and cannot already be spent.

• Using the referenced output transactions to get input values, check that each input value, as
well as the sum, are in the allowed range of values (less than 21m coins, more than 0).

• Reject if the sum of input values is less than sum of output values.

• Reject if transaction fee would be too low to get into an empty block.

• The unlocking scripts for each input must validate against the corresponding output locking
scripts.

These conditions can be seen in detail in the functions AcceptToMemoryPool, CheckTransaction,
and CheckInputs in the bitcoin reference client. Note that the conditions change over time, to
address new types of denial-of-service attacks or sometimes to relax the rules so as to include more
types of transactions.

By independently verifying each transaction as it is received and before propagating it, every node
builds a pool of valid (but unconfirmed) transactions known as the transaction pool, memory pool
or mempool.

Mining Nodes
Some of the nodes on the bitcoin network are specialized nodes called miners. In Introduction we
introduced Jing, a computer engineering student in Shanghai, China, who is a bitcoin miner. Jing
earns bitcoin by running a "mining rig," which is a specialized computer-hardware system designed
to mine bitcoins. Jing’s specialized mining hardware is connected to a server running a full bitcoin
node. Unlike Jing, some miners mine without a full node, as we will see in Mining Pools. Like every
other full node, Jing’s node receives and propagates unconfirmed transactions on the bitcoin
network. Jing’s node, however, also aggregates these transactions into new blocks.

Jing’s node is listening for new blocks, propagated on the bitcoin network, as do all nodes.
However, the arrival of a new block has special significance for a mining node. The competition
among miners effectively ends with the propagation of a new block that acts as an announcement
of a winner. To miners, receiving a new block means someone else won the competition and they
lost. However, the end of one round of a competition is also the beginning of the next round. The
new block is not just a checkered flag, marking the end of the race; it is also the starting pistol in the
race for the next block.
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Aggregating Transactions into Blocks
After validating transactions, a bitcoin node will add them to the memory pool, or transaction pool,
where transactions await until they can be included (mined) into a block. Jing’s node collects,
validates, and relays new transactions just like any other node. Unlike other nodes, however, Jing’s
node will then aggregate these transactions into a candidate block.

Let’s follow the blocks that were created during the time Alice bought a cup of coffee from Bob’s
Cafe (see Buying a Cup of Coffee). Alice’s transaction was included in block 277,316. For the purpose
of demonstrating the concepts in this chapter, let’s assume that block was mined by Jing’s mining
system and follow Alice’s transaction as it becomes part of this new block.

Jing’s mining node maintains a local copy of the blockchain, the list of all blocks created since the
beginning of the bitcoin system in 2009. By the time Alice buys the cup of coffee, Jing’s node has
assembled a chain up to block 277,314. Jing’s node is listening for transactions, trying to mine a new
block and also listening for blocks discovered by other nodes. As Jing’s node is mining, it receives
block 277,315 through the bitcoin network. The arrival of this block signifies the end of the
competition for block 277,315 and the beginning of the competition to create block 277,316.

During the previous 10 minutes, while Jing’s node was searching for a solution to block 277,315, it
was also collecting transactions in preparation for the next block. By now it has collected a few
hundred transactions in the memory pool. Upon receiving block 277,315 and validating it, Jing’s
node will also check all the transactions in the memory pool and remove any that were included in
block 277,315. Whatever transactions remain in the memory pool are unconfirmed and are waiting
to be recorded in a new block.

Jing’s node immediately constructs a new empty block, a candidate for block 277,316. This block is
called a candidate block because it is not yet a valid block, as it does not contain a valid proof of
work. The block becomes valid only if the miner succeeds in finding a solution to the proof-of-work
algorithm.

Transaction Age, Fees, and Priority

To construct the candidate block, Jing’s bitcoin node selects transactions from the memory pool by
applying a priority metric to each transaction and adding the highest priority transactions first.
Transactions are prioritized based on the "age" of the UTXO that is being spent in their inputs,
allowing for old and high-value inputs to be prioritized over newer and smaller inputs. Prioritized
transactions can be sent without any fees, if there is enough space in the block.

The priority of a transaction is calculated as the sum of the value and age of the inputs divided by
the total size of the transaction:

Priority = Sum (Value of input * Input Age) / Transaction Size

In this equation, the value of an input is measured in the base unit, satoshis (1/100m of a bitcoin).
The age of a UTXO is the number of blocks that have elapsed since the UTXO was recorded on the
blockchain, measuring how many blocks "deep" into the blockchain it is. The size of the transaction
is measured in bytes.

173



For a transaction to be considered "high priority," its priority must be greater than 57,600,000,
which corresponds to one bitcoin (100m satoshis), aged one day (144 blocks), in a transaction of 250
bytes total size:

High Priority > 100,000,000 satoshis * 144 blocks / 250 bytes = 57,600,000

The first 50 kilobytes of transaction space in a block are set aside for high-priority transactions.
Jing’s node will fill the first 50 kilobytes, prioritizing the highest priority transactions first,
regardless of fee. This allows high-priority transactions to be processed even if they carry zero fees.

Jing’s mining node then fills the rest of the block up to the maximum block size (MAX_BLOCK_SIZE
in the code), with transactions that carry at least the minimum fee, prioritizing those with the
highest fee per kilobyte of transaction.

If there is any space remaining in the block, Jing’s mining node might choose to fill it with no-fee
transactions. Some miners choose to mine transactions without fees on a best-effort basis. Other
miners may choose to ignore transactions without fees.

Any transactions left in the memory pool, after the block is filled, will remain in the pool for
inclusion in the next block. As transactions remain in the memory pool, their inputs "age," as the
UTXO they spend get deeper into the blockchain with new blocks added on top. Because a
transaction’s priority depends on the age of its inputs, transactions remaining in the pool will age
and therefore increase in priority. Eventually a transaction without fees might reach a high enough
priority to be included in the block for free.

Bitcoin transactions do not have an expiration time-out. A transaction that is valid now will be valid
in perpetuity. However, if a transaction is only propagated across the network once, it will persist
only as long as it is held in a mining node memory pool. When a mining node is restarted, its
memory pool is wiped clear, because it is a transient non-persistent form of storage. Although a
valid transaction might have been propagated across the network, if it is not executed it may
eventually not reside in the memory pool of any miner. Wallet software is expected to retransmit
such transactions or reconstruct them with higher fees if they are not successfully executed within
a reasonable amount of time.

When Jing’s node aggregates all the transactions from the memory pool, the new candidate block
has 418 transactions with total transaction fees of 0.09094928 bitcoin. You can see this block in the
blockchain using the Bitcoin Core client command-line interface, as shown in Block 277,316.

$ bitcoin-cli getblockhash 277316
0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4

$ bitcoin-cli getblock
0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4
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Example 20. Block 277,316

{
    "hash" : "0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",
    "confirmations" : 35561,
    "size" : 218629,
    "height" : 277316,
    "version" : 2,
    "merkleroot" :
"c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e",
    "tx" : [
        "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
        "b268b45c59b39d759614757718b9918caf0ba9d97c56f3b91956ff877c503fbe",

        ... 417 more transactions ...

       ],
    "time" : 1388185914,
    "nonce" : 924591752,
    "bits" : "1903a30c",
    "difficulty" : 1180923195.25802612,
    "chainwork" :
"000000000000000000000000000000000000000000000934695e92aaf53afa1a",
    "previousblockhash" :
"0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569",
    "nextblockhash" :
"000000000000000010236c269dd6ed714dd5db39d36b33959079d78dfd431ba7"
}

The Generation Transaction

The first transaction added to the block is a special transaction, called a generation transaction or
coinbase transaction. This transaction is constructed by Jing’s node and is his reward for the mining
effort. Jing’s node creates the generation transaction as a payment to his own wallet: "Pay Jing’s
address 25.09094928 bitcoin." The total amount of reward that Jing collects for mining a block is the
sum of the coinbase reward (25 new bitcoins) and the transaction fees (0.09094928) from all the
transactions included in the block as shown in Generation transaction:

$ bitcoin-cli getrawtransaction
d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f 1
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Example 21. Generation transaction

{
    "hex" :
"01000000010000000000000000000000000000000000000000000000000000000000000000fffffff
f0f03443b0403858402062f503253482fffffffff0110c08d9500000000232102aa970c592640d19de
03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac00000000",
    "txid" : "d5ada064c6417ca25c4308bd158c34b77e1c0eca2a73cda16c737e7424afba2f",
    "version" : 1,
    "locktime" : 0,
    "vin" : [
        {
            "coinbase" : "03443b0403858402062f503253482f",
            "sequence" : 4294967295
        }
    ],
    "vout" : [
        {
            "value" : 25.09094928,
            "n" : 0,
            "scriptPubKey" : {
                "asm" :
"02aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21OP_CHECKSIG",
                "hex" :
"2102aa970c592640d19de03ff6f329d6fd2eecb023263b9ba5d1b81c29b523da8b21ac",
                "reqSigs" : 1,
                "type" : "pubkey",
                "addresses" : [
                    "1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N"
                ]
            }
        }
    ],
    "blockhash" :
"0000000000000001b6b9a13b095e96db41c4a928b97ef2d944a9b31b2cc7bdc4",
    "confirmations" : 35566,
    "time" : 1388185914,
    "blocktime" : 1388185914
}

Unlike regular transactions, the generation transaction does not consume (spend) UTXO as inputs.
Instead, it has only one input, called the coinbase, which creates bitcoin from nothing. The
generation transaction has one output, payable to the miner’s own bitcoin address. The output of
the generation transaction sends the value of 25.09094928 bitcoins to the miner’s bitcoin address, in
this case 1MxTkeEP2PmHSMze5tUZ1hAV3YTKu2Gh1N.
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Coinbase Reward and Fees

To construct the generation transaction, Jing’s node first calculates the total amount of transaction
fees by adding all the inputs and outputs of the 418 transactions that were added to the block. The
fees are calculated as:

Total Fees = Sum(Inputs) - Sum(Outputs)

In block 277,316, the total transaction fees are 0.09094928 bitcoins.

Next, Jing’s node calculates the correct reward for the new block. The reward is calculated based on
the block height, starting at 50 bitcoins per block and reduced by half every 210,000 blocks. Because
this block is at height 277,316, the correct reward is 25 bitcoins.

The calculation can be seen in function GetBlockSubsidy in the Bitcoin Core client, as shown in
Calculating the block reward — Function GetBlockSubsidy, Bitcoin Core Client, main.cpp.

Example 22. Calculating the block reward — Function GetBlockSubsidy, Bitcoin Core Client, main.cpp

CAmount GetBlockSubsidy(int nHeight, const Consensus::Params& consensusParams)
{
    int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
    // Force block reward to zero when right shift is undefined.
    if (halvings >= 64)
        return 0;

    CAmount nSubsidy = 50 * COIN;
    // Subsidy is cut in half every 210,000 blocks which will occur approximately
every 4 years.
    nSubsidy >>= halvings;
    return nSubsidy;
}

The initial subsidy is calculated in satoshis by multiplying 50 with the COIN constant (100,000,000
satoshis). This sets the initial reward (nSubsidy) at 5 billion satoshis.

Next, the function calculates the number of halvings that have occurred by dividing the current
block height by the halving interval (SubsidyHalvingInterval). In the case of block 277,316, with a
halving interval every 210,000 blocks, the result is 1 halving.

The maximum number of halvings allowed is 64, so the code imposes a zero reward (return only
the fees) if the 64 halvings is exceeded.

Next, the function uses the binary-right-shift operator to divide the reward (nSubsidy) by two for
each round of halving. In the case of block 277,316, this would binary-right-shift the reward of 5
billion satoshis once (one halving) and result in 2.5 billion satoshis, or 25 bitcoins. The binary-right-
shift operator is used because it is more efficient for division by two than integer or floating-point
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division.

Finally, the coinbase reward (nSubsidy) is added to the transaction fees (nFees), and the sum is
returned.

Structure of the Generation Transaction

With these calculations, Jing’s node then constructs the generation transaction to pay himself
25.09094928 bitcoin.

As you can see in Generation transaction, the generation transaction has a special format. Instead
of a transaction input specifying a previous UTXO to spend, it has a "coinbase" input. We examined
transaction inputs in The structure of a transaction input. Let’s compare a regular transaction input
with a generation transaction input. The structure of a "normal" transaction input shows the
structure of a regular transaction, while The structure of a generation transaction input shows the
structure of the generation transaction’s input.

Table 23. The structure of a "normal" transaction input

Size Field Description

32 bytes Transaction Hash Pointer to the transaction
containing the UTXO to be spent

4 bytes Output Index The index number of the UTXO
to be spent, first one is 0

1-9 bytes (VarInt) Unlocking-Script Size Unlocking-Script length in
bytes, to follow

Variable Unlocking-Script A script that fulfills the
conditions of the UTXO locking
script.

4 bytes Sequence Number Currently disabled Tx-
replacement feature, set to
0xFFFFFFFF

Table 24. The structure of a generation transaction input

Size Field Description

32 bytes Transaction Hash All bits are zero: Not a
transaction hash reference

4 bytes Output Index All bits are ones: 0xFFFFFFFF

1-9 bytes (VarInt) Coinbase Data Size Length of the coinbase data,
from 2 to 100 bytes

Variable Coinbase Data Arbitrary data used for extra
nonce and mining tags in v2
blocks, must begin with block
height
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Size Field Description

4 bytes Sequence Number Set to 0xFFFFFFFF

In a generation transaction, the first two fields are set to values that do not represent a UTXO
reference. Instead of a "Transaction Hash," the first field is filled with 32 bytes all set to zero. The
"Output Index" is filled with 4 bytes all set to 0xFF (255 decimal). The "Unlocking Script" is replaced
by coinbase data, an arbitrary data field used by the miners.

Coinbase Data

Generation transactions do not have an unlocking script (a.k.a., scriptSig) field. Instead, this field is
replaced by coinbase data, which must be between 2 and 100 bytes. Except for the first few bytes,
the rest of the coinbase data can be used by miners in any way they want; it is arbitrary data.

In the genesis block, for example, Satoshi Nakamoto added the text "The Times 03/Jan/2009
Chancellor on brink of second bailout for banks" in the coinbase data, using it as a proof of the date
and to convey a message. Currently, miners use the coinbase data to include extra nonce values and
strings identifying the mining pool, as we will see in the following sections.

The first few bytes of the coinbase used to be arbitrary, but that is no longer the case. As per Bitcoin
Improvement Proposal 34 (BIP0034), version-2 blocks (blocks with the version field set to 2) must
contain the block height index as a script "push" operation in the beginning of the coinbase field.

In block 277,316 we see that the coinbase (see Generation transaction), which is in the "Unlocking
Script" or scriptSig field of the transaction input, contains the hexadecimal value
03443b0403858402062f503253482f. Let’s decode this value.

The first byte, 03, instructs the script execution engine to push the next three bytes onto the script
stack (see Push value onto stack). The next three bytes, 0x443b04, are the block height encoded in
little-endian format (backward, least significant byte first). Reverse the order of the bytes and the
result is 0x043b44, which is 277,316 in decimal.

The next few hexadecimal digits (03858402062) are used to encode an extra nonce (see The Extra
Nonce Solution), or random value, used to find a suitable proof of work solution.

The final part of the coinbase data (2f503253482f) is the ASCII-encoded string /P2SH/, which
indicates that the mining node that mined this block supports the pay-to-script-hash (P2SH)
improvement defined in BIP0016. The introduction of the P2SH capability required a "vote" by
miners to endorse either BIP0016 or BIP0017. Those endorsing the BIP0016 implementation were to
include /P2SH/ in their coinbase data. Those endorsing the BIP0017 implementation of P2SH were to
include the string p2sh/CHV in their coinbase data. The BIP0016 was elected as the winner, and
many miners continued including the string /P2SH/ in their coinbase to indicate support for this
feature.

Extract the coinbase data from the genesis block uses the libbitcoin library introduced in
Alternative Clients, Libraries, and Toolkits to extract the coinbase data from the genesis block,
displaying Satoshi’s message. Note that the libbitcoin library contains a static copy of the genesis
block, so the example code can retrieve the genesis block directly from the library.
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Example 23. Extract the coinbase data from the genesis block

/*
  Display the genesis block message by Satoshi.
*/
#include <iostream>
#include <bitcoin/bitcoin.hpp>

int main()
{
    // Create genesis block.
    bc::block_type block = bc::genesis_block();
    // Genesis block contains a single coinbase transaction.
    assert(block.transactions.size() == 1);
    // Get first transaction in block (coinbase).
    const bc::transaction_type& coinbase_tx = block.transactions[0];
    // Coinbase tx has a single input.
    assert(coinbase_tx.inputs.size() == 1);
    const bc::transaction_input_type& coinbase_input = coinbase_tx.inputs[0];
    // Convert the input script to its raw format.
    const bc::data_chunk& raw_message = save_script(coinbase_input.script);
    // Convert this to an std::string.
    std::string message;
    message.resize(raw_message.size());
    std::copy(raw_message.begin(), raw_message.end(), message.begin());
    // Display the genesis block message.
    std::cout << message << std::endl;
    return 0;
}

We compile the code with the GNU C++ compiler and run the resulting executable, as shown in
Compiling and running the satoshi-words example code.

Example 24. Compiling and running the satoshi-words example code

$ # Compile the code
$  g++ -o satoshi-words satoshi-words.cpp $(pkg-config --cflags --libs libbitcoin)
$ # Run the executable
$ ./satoshi-words
^D��<GS>^A^DEThe Times 03/Jan/2009 Chancellor on brink of second bailout for
banks

Constructing the Block Header
To construct the block header, the mining node needs to fill in six fields, as listed in The structure of
the block header.
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Table 25. The structure of the block header

Size Field Description

4 bytes Version A version number to track
software/protocol upgrades

32 bytes Previous Block Hash A reference to the hash of the
previous (parent) block in the
chain

32 bytes Merkle Root A hash of the root of the merkle
tree of this block’s transactions

4 bytes Timestamp The approximate creation time
of this block (seconds from Unix
Epoch)

4 bytes Difficulty Target The proof-of-work algorithm
difficulty target for this block

4 bytes Nonce A counter used for the proof-of-
work algorithm

At the time that block 277,316 was mined, the version number describing the block structure is
version 2, which is encoded in little-endian format in 4 bytes as 0x02000000.

Next, the mining node needs to add the "Previous Block Hash." That is the hash of the block header
of block 277,315, the previous block received from the network, which Jing’s node has accepted and
selected as the parent of the candidate block 277,316. The block header hash for block 277,315 is:

0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569

The next step is to summarize all the transactions with a merkle tree, in order to add the merkle
root to the block header. The generation transaction is listed as the first transaction in the block.
Then, 418 more transactions are added after it, for a total of 419 transactions in the block. As we
saw in the Merkle Trees, there must be an even number of "leaf" nodes in the tree, so the last
transaction is duplicated, creating 420 nodes, each containing the hash of one transaction. The
transaction hashes are then combined, in pairs, creating each level of the tree, until all the
transactions are summarized into one node at the "root" of the tree. The root of the merkle tree
summarizes all the transactions into a single 32-byte value, which you can see listed as "merkle
root" in Block 277,316, and here:

c91c008c26e50763e9f548bb8b2fc323735f73577effbc55502c51eb4cc7cf2e

The mining node will then add a 4-byte timestamp, encoded as a Unix "Epoch" timestamp, which is
based on the number of seconds elapsed from January 1, 1970, midnight UTC/GMT. The time
1388185914 is equal to Friday, 27 Dec 2013, 23:11:54 UTC/GMT.

The node then fills in the difficulty target, which defines the required proof-of-work difficulty to
make this a valid block. The difficulty is stored in the block as a "difficulty bits" metric, which is a

181



mantissa-exponent encoding of the target. The encoding has a 1-byte exponent, followed by a 3-byte
mantissa (coefficient). In block 277,316, for example, the difficulty bits value is 0x1903a30c. The
first part 0x19 is a hexadecimal exponent, while the next part, 0x03a30c, is the coefficient. The
concept of a difficulty target is explained in Difficulty Target and Retargeting and the "difficulty
bits" representation is explained in Difficulty Representation.

The final field is the nonce, which is initialized to zero.

With all the other fields filled, the block header is now complete and the process of mining can
begin. The goal is now to find a value for the nonce that results in a block header hash that is less
than the difficulty target. The mining node will need to test billions or trillions of nonce values
before a nonce is found that satisfies the requirement.

Mining the Block
Now that a candidate block has been constructed by Jing’s node, it is time for Jing’s hardware
mining rig to "mine" the block, to find a solution to the proof-of-work algorithm that makes the
block valid. Throughout this book we have studied cryptographic hash functions as used in various
aspects of the bitcoin system. The hash function SHA256 is the function used in bitcoin’s mining
process.

In the simplest terms, mining is the process of hashing the block header repeatedly, changing one
parameter, until the resulting hash matches a specific target. The hash function’s result cannot be
determined in advance, nor can a pattern be created that will produce a specific hash value. This
feature of hash functions means that the only way to produce a hash result matching a specific
target is to try again and again, randomly modifying the input until the desired hash result appears
by chance.

Proof-Of-Work Algorithm

A hash algorithm takes an arbitrary-length data input and produces a fixed-length deterministic
result, a digital fingerprint of the input. For any specific input, the resulting hash will always be the
same and can be easily calculated and verified by anyone implementing the same hash algorithm.
The key characteristic of a cryptographic hash algorithm is that it is virtually impossible to find two
different inputs that produce the same fingerprint. As a corollary, it is also virtually impossible to
select an input in such a way as to produce a desired fingerprint, other than trying random inputs.

With SHA256, the output is always 256 bits long, regardless of the size of the input. In SHA256
example, we will use the Python interpreter to calculate the SHA256 hash of the phrase, "I am
Satoshi Nakamoto."
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Example 25. SHA256 example

$ python

Python 2.7.1
>>> import hashlib
>>> print hashlib.sha256("I am Satoshi Nakamoto").hexdigest()
5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e

SHA256 example shows the result of calculating the hash of "I am Satoshi Nakamoto":
5d7c7ba21cbbcd75d14800b100252d5b428e5b1213d27c385bc141ca6b47989e. This 256-bit number is
the hash or digest of the phrase and depends on every part of the phrase. Adding a single letter,
punctuation mark, or any other character will produce a different hash.

Now, if we change the phrase, we should expect to see completely different hashes. Let’s try that by
adding a number to the end of our phrase, using the simple Python scripting in SHA256 A script for
generating many hashes by iterating on a nonce.

Example 26. SHA256 A script for generating many hashes by iterating on a nonce

# example of iterating a nonce in a hashing algorithm's input

import hashlib

text = "I am Satoshi Nakamoto"

# iterate nonce from 0 to 19
for nonce in xrange(20):

    # add the nonce to the end of the text
    input = text + str(nonce)

    # calculate the SHA-256 hash of the input (text+nonce)
    hash = hashlib.sha256(input).hexdigest()

    # show the input and hash result
    print input, '=>',  hash

Running this will produce the hashes of several phrases, made different by adding a number at the
end of the text. By incrementing the number, we can get different hashes, as shown in SHA256
output of a script for generating many hashes by iterating on a nonce.
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Example 27. SHA256 output of a script for generating many hashes by iterating on a nonce

$ python hash_example.py

I am Satoshi Nakamoto0 => a80a81401765c8eddee25df36728d732...
I am Satoshi Nakamoto1 => f7bc9a6304a4647bb41241a677b5345f...
I am Satoshi Nakamoto2 => ea758a8134b115298a1583ffb80ae629...
I am Satoshi Nakamoto3 => bfa9779618ff072c903d773de30c99bd...
I am Satoshi Nakamoto4 => bce8564de9a83c18c31944a66bde992f...
I am Satoshi Nakamoto5 => eb362c3cf3479be0a97a20163589038e...
I am Satoshi Nakamoto6 => 4a2fd48e3be420d0d28e202360cfbaba...
I am Satoshi Nakamoto7 => 790b5a1349a5f2b909bf74d0d166b17a...
I am Satoshi Nakamoto8 => 702c45e5b15aa54b625d68dd947f1597...
I am Satoshi Nakamoto9 => 7007cf7dd40f5e933cd89fff5b791ff0...
I am Satoshi Nakamoto10 => c2f38c81992f4614206a21537bd634a...
I am Satoshi Nakamoto11 => 7045da6ed8a914690f087690e1e8d66...
I am Satoshi Nakamoto12 => 60f01db30c1a0d4cbce2b4b22e88b9b...
I am Satoshi Nakamoto13 => 0ebc56d59a34f5082aaef3d66b37a66...
I am Satoshi Nakamoto14 => 27ead1ca85da66981fd9da01a8c6816...
I am Satoshi Nakamoto15 => 394809fb809c5f83ce97ab554a2812c...
I am Satoshi Nakamoto16 => 8fa4992219df33f50834465d3047429...
I am Satoshi Nakamoto17 => dca9b8b4f8d8e1521fa4eaa46f4f0cd...
I am Satoshi Nakamoto18 => 9989a401b2a3a318b01e9ca9a22b0f3...
I am Satoshi Nakamoto19 => cda56022ecb5b67b2bc93a2d764e75f...

Each phrase produces a completely different hash result. They seem completely random, but you
can reproduce the exact results in this example on any computer with Python and see the same
exact hashes.

The number used as a variable in such a scenario is called a nonce. The nonce is used to vary the
output of a cryptographic function, in this case to vary the SHA256 fingerprint of the phrase.

To make a challenge out of this algorithm, let’s set an arbitrary target: find a phrase that produces a
hexadecimal hash that starts with a zero. Fortunately, this isn’t difficult! SHA256 output of a script
for generating many hashes by iterating on a nonce shows that the phrase "I am Satoshi
Nakamoto13" produces the hash
0ebc56d59a34f5082aaef3d66b37a661696c2b618e62432727216ba9531041a5, which fits our criteria.
It took 13 attempts to find it. In terms of probabilities, if the output of the hash function is evenly
distributed we would expect to find a result with a 0 as the hexadecimal prefix once every 16
hashes (one out of 16 hexadecimal digits 0 through F). In numerical terms, that means finding a
hash value that is less than
0x1000000000000000000000000000000000000000000000000000000000000000. We call this
threshold the target and the goal is to find a hash that is numerically less than the target. If we
decrease the target, the task of finding a hash that is less than the target becomes more and more
difficult.

To give a simple analogy, imagine a game where players throw a pair of dice repeatedly, trying to
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throw less than a specified target. In the first round, the target is 12. Unless you throw double-six,
you win. In the next round the target is 11. Players must throw 10 or less to win, again an easy task.
Let’s say a few rounds later the target is down to 5. Now, more than half the dice throws will add up
to more than 5 and therefore be invalid. It takes exponentially more dice throws to win, the lower
the target gets. Eventually, when the target is 2 (the minimum possible), only one throw out of every
36, or 2% of them, will produce a winning result.

In SHA256 output of a script for generating many hashes by iterating on a nonce, the winning
"nonce" is 13 and this result can be confirmed by anyone independently. Anyone can add the
number 13 as a suffix to the phrase "I am Satoshi Nakamoto" and compute the hash, verifying that
it is less than the target. The successful result is also proof of work, because it proves we did the
work to find that nonce. While it only takes one hash computation to verify, it took us 13 hash
computations to find a nonce that worked. If we had a lower target (higher difficulty) it would take
many more hash computations to find a suitable nonce, but only one hash computation for anyone
to verify. Furthermore, by knowing the target, anyone can estimate the difficulty using statistics
and therefore know how much work was needed to find such a nonce.

Bitcoin’s proof of work is very similar to the challenge shown in SHA256 output of a script for
generating many hashes by iterating on a nonce. The miner constructs a candidate block filled with
transactions. Next, the miner calculates the hash of this block’s header and sees if it is smaller than
the current target. If the hash is not less than the target, the miner will modify the nonce (usually
just incrementing it by one) and try again. At the current difficulty in the bitcoin network, miners
have to try quadrillions of times before finding a nonce that results in a low enough block header
hash.

A very simplified proof-of-work algorithm is implemented in Python in Simplified proof-of-work
implementation.

Example 28. Simplified proof-of-work implementation

#!/usr/bin/env python
# example of proof-of-work algorithm

import hashlib
import time

max_nonce = 2 ** 32 # 4 billion

def proof_of_work(header, difficulty_bits):

    # calculate the difficulty target
    target = 2 ** (256-difficulty_bits)

    for nonce in xrange(max_nonce):
        hash_result = hashlib.sha256(str(header)+str(nonce)).hexdigest()

        # check if this is a valid result, below the target
        if long(hash_result, 16) < target:
            print "Success with nonce %d" % nonce
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            print "Hash is %s" % hash_result
            return (hash_result,nonce)

    print "Failed after %d (max_nonce) tries" % nonce
    return nonce

if __name__ == '__main__':

    nonce = 0
    hash_result = ''

    # difficulty from 0 to 31 bits
    for difficulty_bits in xrange(32):

        difficulty = 2 ** difficulty_bits
        print "Difficulty: %ld (%d bits)" % (difficulty, difficulty_bits)

        print "Starting search..."

        # checkpoint the current time
        start_time = time.time()

        # make a new block which includes the hash from the previous block
        # we fake a block of transactions - just a string
        new_block = 'test block with transactions' + hash_result

        # find a valid nonce for the new block
        (hash_result, nonce) = proof_of_work(new_block, difficulty_bits)

        # checkpoint how long it took to find a result
        end_time = time.time()

        elapsed_time = end_time - start_time
        print "Elapsed Time: %.4f seconds" % elapsed_time

        if elapsed_time > 0:

            # estimate the hashes per second
            hash_power = float(long(nonce)/elapsed_time)
            print "Hashing Power: %ld hashes per second" % hash_power

Running this code, you can set the desired difficulty (in bits, how many of the leading bits must be
zero) and see how long it takes for your computer to find a solution. In Running the proof of work
example for various difficulties, you can see how it works on an average laptop.

Example 29. Running the proof of work example for various difficulties
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$ python proof-of-work-example.py*

Difficulty: 1 (0 bits)

[...]

Difficulty: 8 (3 bits)
Starting search...
Success with nonce 9
Hash is 1c1c105e65b47142f028a8f93ddf3dabb9260491bc64474738133ce5256cb3c1
Elapsed Time: 0.0004 seconds
Hashing Power: 25065 hashes per second
Difficulty: 16 (4 bits)
Starting search...
Success with nonce 25
Hash is 0f7becfd3bcd1a82e06663c97176add89e7cae0268de46f94e7e11bc3863e148
Elapsed Time: 0.0005 seconds
Hashing Power: 52507 hashes per second
Difficulty: 32 (5 bits)
Starting search...
Success with nonce 36
Hash is 029ae6e5004302a120630adcbb808452346ab1cf0b94c5189ba8bac1d47e7903
Elapsed Time: 0.0006 seconds
Hashing Power: 58164 hashes per second

[...]

Difficulty: 4194304 (22 bits)
Starting search...
Success with nonce 1759164
Hash is 0000008bb8f0e731f0496b8e530da984e85fb3cd2bd81882fe8ba3610b6cefc3
Elapsed Time: 13.3201 seconds
Hashing Power: 132068 hashes per second
Difficulty: 8388608 (23 bits)
Starting search...
Success with nonce 14214729
Hash is 000001408cf12dbd20fcba6372a223e098d58786c6ff93488a9f74f5df4df0a3
Elapsed Time: 110.1507 seconds
Hashing Power: 129048 hashes per second
Difficulty: 16777216 (24 bits)
Starting search...
Success with nonce 24586379
Hash is 0000002c3d6b370fccd699708d1b7cb4a94388595171366b944d68b2acce8b95
Elapsed Time: 195.2991 seconds
Hashing Power: 125890 hashes per second

[...]

Difficulty: 67108864 (26 bits)
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Starting search...
Success with nonce 84561291
Hash is 0000001f0ea21e676b6dde5ad429b9d131a9f2b000802ab2f169cbca22b1e21a
Elapsed Time: 665.0949 seconds
Hashing Power: 127141 hashes per second

As you can see, increasing the difficulty by 1 bit causes an exponential increase in the time it takes
to find a solution. If you think of the entire 256-bit number space, each time you constrain one
more bit to zero, you decrease the search space by half. In Running the proof of work example for
various difficulties, it takes 84 million hash attempts to find a nonce that produces a hash with 26
leading bits as zero. Even at a speed of more than 120,000 hashes per second, it still requires 10
minutes on a consumer laptop to find this solution.

At the time of writing, the network is attempting to find a block whose header hash is less than
000000000000004c296e6376db3a241271f43fd3f5de7ba18986e517a243baa7. As you can see, there
are a lot of zeros at the beginning of that hash, meaning that the acceptable range of hashes is much
smaller, hence it’s more difficult to find a valid hash. It will take on average more than 150
quadrillion hash calculations per second for the network to discover the next block. That seems like
an impossible task, but fortunately the network is bringing 100 petahashes per second (PH/sec) of
processing power to bear, which will be able to find a block in about 10 minutes on average.

Difficulty Representation

In Block 277,316, we saw that the block contains the difficulty target, in a notation called "difficulty
bits" or just "bits," which in block 277,316 has the value of 0x1903a30c. This notation expresses the
difficulty target as a coefficient/exponent format, with the first two hexadecimal digits for the
exponent and the next six hex digits as the coefficient. In this block, therefore, the exponent is 0x19
and the coefficient is 0x03a30c.

The formula to calculate the difficulty target from this representation is:

target = coefficient * 2^(8 * (exponent – 3))

Using that formula, and the difficulty bits value 0x1903a30c, we get:

target = 0x03a30c * 2^(0x08 * (0x19 - 0x03))^

=> target = 0x03a30c * 2^(0x08 * 0x16)^

=> target = 0x03a30c * 2^0xB0^

which in decimal is:
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=> target = 238,348 * 2^176^

=> target =
22,829,202,948,393,929,850,749,706,076,701,368,331,072,452,018,388,575,715,328

switching back to hexadecimal:

=> target = 0x0000000000000003A30C00000000000000000000000000000000000000000000

This means that a valid block for height 277,316 is one that has a block header hash that is less than
the target. In binary that number would have more than the first 60 bits set to zero. With this level
of difficulty, a single miner processing 1 trillion hashes per second (1 tera-hash per second or 1
TH/sec) would only find a solution once every 8,496 blocks or once every 59 days, on average.

Difficulty Target and Retargeting

As we saw, the target determines the difficulty and therefore affects how long it takes to find a
solution to the proof-of-work algorithm. This leads to the obvious questions: Why is the difficulty
adjustable, who adjusts it, and how?

Bitcoin’s blocks are generated every 10 minutes, on average. This is bitcoin’s heartbeat and
underpins the frequency of currency issuance and the speed of transaction settlement. It has to
remain constant not just over the short term, but over a period of many decades. Over this time, it
is expected that computer power will continue to increase at a rapid pace. Furthermore, the
number of participants in mining and the computers they use will also constantly change. To keep
the block generation time at 10 minutes, the difficulty of mining must be adjusted to account for
these changes. In fact, difficulty is a dynamic parameter that will be periodically adjusted to meet a
10-minute block target. In simple terms, the difficulty target is set to whatever mining power will
result in a 10-minute block interval.

How, then, is such an adjustment made in a completely decentralized network? Difficulty
retargeting occurs automatically and on every full node independently. Every 2,016 blocks, all
nodes retarget the proof-of-work difficulty. The equation for retargeting difficulty measures the
time it took to find the last 2,016 blocks and compares that to the expected time of 20,160 minutes
(two weeks based upon a desired 10-minute block time). The ratio between the actual timespan and
desired timespan is calculated and a corresponding adjustment (up or down) is made to the
difficulty. In simple terms: If the network is finding blocks faster than every 10 minutes, the
difficulty increases. If block discovery is slower than expected, the difficulty decreases.

The equation can be summarized as:

New Difficulty = Old Difficulty * (Actual Time of Last 2016 Blocks / 20160 minutes)

Retargeting the proof-of-work difficulty — CalculateNextWorkRequired() in pow.cpp shows the
code used in the Bitcoin Core client.
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Example 30. Retargeting the proof-of-work difficulty — CalculateNextWorkRequired() in pow.cpp

   // Limit adjustment step
    int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime;
    LogPrintf("  nActualTimespan = %d  before bounds\n", nActualTimespan);
    if (nActualTimespan < params.nPowTargetTimespan/4)
        nActualTimespan = params.nPowTargetTimespan/4;
    if (nActualTimespan > params.nPowTargetTimespan*4)
        nActualTimespan = params.nPowTargetTimespan*4;

    // Retarget
    const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
    arith_uint256 bnNew;
    arith_uint256 bnOld;
    bnNew.SetCompact(pindexLast->nBits);
    bnOld = bnNew;
    bnNew *= nActualTimespan;
    bnNew /= params.nPowTargetTimespan;

    if (bnNew > bnPowLimit)
        bnNew = bnPowLimit;

NOTE

While the difficulty calibration happens every 2,016 blocks, because of an off-by-
one error in the original Bitcoin Core client it is based on the total time of the
previous 2,015 blocks (not 2,016 as it should be), resulting in a retargeting bias
towards higher difficulty by 0.05%.

The parameters Interval (2,016 blocks) and TargetTimespan (two weeks as 1,209,600 seconds) are
defined in chainparams.cpp.

To avoid extreme volatility in the difficulty, the retargeting adjustment must be less than a factor of
four (4) per cycle. If the required difficulty adjustment is greater than a factor of four, it will be
adjusted by the maximum and not more. Any further adjustment will be accomplished in the next
retargeting period because the imbalance will persist through the next 2,016 blocks. Therefore,
large discrepancies between hashing power and difficulty might take several 2,016 block cycles to
balance out.

TIP
The difficulty of finding a bitcoin block is approximately '10 minutes of processing' for
the entire network, based on the time it took to find the previous 2,016 blocks,
adjusted every 2,016 blocks.

Note that the target difficulty is independent of the number of transactions or the value of
transactions. This means that the amount of hashing power and therefore electricity expended to
secure bitcoin is also entirely independent of the number of transactions. Bitcoin can scale up,
achieve broader adoption, and remain secure without any increase in hashing power from today’s
level. The increase in hashing power represents market forces as new miners enter the market to
compete for the reward. As long as enough hashing power is under the control of miners acting
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honestly in pursuit of the reward, it is enough to prevent "takeover" attacks and, therefore, it is
enough to secure bitcoin.

The target difficulty is closely related to the cost of electricity and the exchange rate of bitcoin vis-a-
vis the currency used to pay for electricity. High-performance mining systems are about as efficient
as possible with the current generation of silicon fabrication, converting electricity into hashing
computation at the highest rate possible. The primary influence on the mining market is the price
of one kilowatt-hour in bitcoin, because that determines the profitability of mining and therefore
the incentives to enter or exit the mining market.

Successfully Mining the Block
As we saw earlier, Jing’s node has constructed a candidate block and prepared it for mining. Jing
has several hardware mining rigs with application-specific integrated circuits, where hundreds of
thousands of integrated circuits run the SHA256 algorithm in parallel at incredible speeds. These
specialized machines are connected to his mining node over USB. Next, the mining node running
on Jing’s desktop transmits the block header to his mining hardware, which starts testing trillions
of nonces per second.

Almost 11 minutes after starting to mine block 277,316, one of the hardware mining machines finds
a solution and sends it back to the mining node. When inserted into the block header, the nonce
4,215,469,401 produces a block hash of:

0000000000000002a7bbd25a417c0374cc55261021e8a9ca74442b01284f0569

which is less than the target:

0000000000000003A30C00000000000000000000000000000000000000000000

Immediately, Jing’s mining node transmits the block to all its peers. They receive, validate, and then
propagate the new block. As the block ripples out across the network, each node adds it to its own
copy of the blockchain, extending it to a new height of 277,316 blocks. As mining nodes receive and
validate the block, they abandon their efforts to find a block at the same height and immediately
start computing the next block in the chain.

In the next section, we’ll look at the process each node uses to validate a block and select the
longest chain, creating the consensus that forms the decentralized blockchain.

Validating a New Block
The third step in bitcoin’s consensus mechanism is independent validation of each new block by
every node on the network. As the newly solved block moves across the network, each node
performs a series of tests to validate it before propagating it to its peers. This ensures that only
valid blocks are propagated on the network. The independent validation also ensures that miners
who act honestly get their blocks incorporated in the blockchain, thus earning the reward. Those
miners who act dishonestly have their blocks rejected and not only lose the reward, but also waste
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the effort expended to find a proof-of-work solution, thus incurring the cost of electricity without
compensation.

When a node receives a new block, it will validate the block by checking it against a long list of
criteria that must all be met; otherwise, the block is rejected. These criteria can be seen in the
Bitcoin Core client in the functions CheckBlock and CheckBlockHeader and include:

• The block data structure is syntactically valid

• The block header hash is less than the target difficulty (enforces the proof of work)

• The block timestamp is less than two hours in the future (allowing for time errors)

• The block size is within acceptable limits

• The first transaction (and only the first) is a coinbase generation transaction

• All transactions within the block are valid using the transaction checklist discussed in
Independent Verification of Transactions

The independent validation of each new block by every node on the network ensures that the
miners can’t cheat. In previous sections we saw how the miners get to write a transaction that
awards them the new bitcoins created within the block and claim the transaction fees. Why don’t
miners write themselves a transaction for a thousand bitcoin instead of the correct reward?
Because every node validates blocks according to the same rules. An invalid coinbase transaction
would make the entire block invalid, which would result in the block being rejected and, therefore,
that transaction would never become part of the ledger. The miners have to construct a perfect
block, based on the shared rules that all nodes follow, and mine it with a correct solution to the
proof of work. To do so, they expend a lot of electricity in mining, and if they cheat, all the
electricity and effort is wasted. This is why independent validation is a key component of
decentralized consensus.

Assembling and Selecting Chains of Blocks
The final step in bitcoin’s decentralized consensus mechanism is the assembly of blocks into chains
and the selection of the chain with the most proof of work. Once a node has validated a new block,
it will then attempt to assemble a chain by connecting the block to the existing blockchain.

Nodes maintain three sets of blocks: those connected to the main blockchain, those that form
branches off the main blockchain (secondary chains), and finally, blocks that do not have a known
parent in the known chains (orphans). Invalid blocks are rejected as soon as any one of the
validation criteria fails and are therefore not included in any chain.

The "main chain" at any time is whichever chain of blocks has the most cumulative difficulty
associated with it. Under most circumstances this is also the chain with the most blocks in it, unless
there are two equal-length chains and one has more proof of work. The main chain will also have
branches with blocks that are "siblings" to the blocks on the main chain. These blocks are valid but
not part of the main chain. They are kept for future reference, in case one of those chains is
extended to exceed the main chain in difficulty. In the next section (Blockchain Forks), we will see
how secondary chains occur as a result of an almost simultaneous mining of blocks at the same
height.
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When a new block is received, a node will try to slot it into the existing blockchain. The node will
look at the block’s "previous block hash" field, which is the reference to the new block’s parent.
Then, the node will attempt to find that parent in the existing blockchain. Most of the time, the
parent will be the "tip" of the main chain, meaning this new block extends the main chain. For
example, the new block 277,316 has a reference to the hash of its parent block 277,315. Most nodes
that receive 277,316 will already have block 277,315 as the tip of their main chain and will
therefore link the new block and extend that chain.

Sometimes, as we will see in Blockchain Forks, the new block extends a chain that is not the main
chain. In that case, the node will attach the new block to the secondary chain it extends and then
compare the difficulty of the secondary chain to the main chain. If the secondary chain has more
cumulative difficulty than the main chain, the node will reconverge on the secondary chain,
meaning it will select the secondary chain as its new main chain, making the old main chain a
secondary chain. If the node is a miner, it will now construct a block extending this new, longer,
chain.

If a valid block is received and no parent is found in the existing chains, that block is considered an
"orphan." Orphan blocks are saved in the orphan block pool where they will stay until their parent
is received. Once the parent is received and linked into the existing chains, the orphan can be
pulled out of the orphan pool and linked to the parent, making it part of a chain. Orphan blocks
usually occur when two blocks that were mined within a short time of each other are received in
reverse order (child before parent).

By selecting the greatest-difficulty chain, all nodes eventually achieve network-wide consensus.
Temporary discrepancies between chains are resolved eventually as more proof of work is added,
extending one of the possible chains. Mining nodes "vote" with their mining power by choosing
which chain to extend by mining the next block. When they mine a new block and extend the
chain, the new block itself represents their vote.

In the next section we will look at how discrepancies between competing chains (forks) are
resolved by the independent selection of the longest difficulty chain.

Blockchain Forks

Because the blockchain is a decentralized data structure, different copies of it are not always
consistent. Blocks might arrive at different nodes at different times, causing the nodes to have
different perspectives of the blockchain. To resolve this, each node always selects and attempts to
extend the chain of blocks that represents the most proof of work, also known as the longest chain
or greatest cumulative difficulty chain. By summing the difficulty recorded in each block in a chain,
a node can calculate the total amount of proof of work that has been expended to create that chain.
As long as all nodes select the longest cumulative difficulty chain, the global bitcoin network
eventually converges to a consistent state. Forks occur as temporary inconsistencies between
versions of the blockchain, which are resolved by eventual reconvergence as more blocks are
added to one of the forks.

In the next few diagrams, we follow the progress of a "fork" event across the network. The diagram
is a simplified representation of bitcoin as a global network. In reality, the bitcoin network’s
topology is not organized geographically. Rather, it forms a mesh network of interconnected nodes,
which might be located very far from each other geographically. The representation of a geographic

193



topology is a simplification used for the purposes of illustrating a fork. In the real bitcoin network,
the "distance" between nodes is measured in "hops" from node to node, not on their physical
location. For illustration purposes, different blocks are shown as different colors, spreading across
the network and coloring the connections they traverse.

In the first diagram (Visualization of a blockchain fork event—before the fork), the network has a
unified perspective of the blockchain, with the blue block as the tip of the main chain.

Figure 57. Visualization of a blockchain fork event—before the fork

A "fork" occurs whenever there are two candidate blocks competing to form the longest blockchain.
This occurs under normal conditions whenever two miners solve the proof-of-work algorithm
within a short period of time from each other. As both miners discover a solution for their
respective candidate blocks, they immediately broadcast their own "winning" block to their
immediate neighbors who begin propagating the block across the network. Each node that receives
a valid block will incorporate it into its blockchain, extending the blockchain by one block. If that
node later sees another candidate block extending the same parent, it connects the second
candidate on a secondary chain. As a result, some nodes will "see" one candidate block first, while
other nodes will see the other candidate block and two competing versions of the blockchain will
emerge.

In Visualization of a blockchain fork event: two blocks found simultaneously, we see two miners
who mine two different blocks almost simultaneously. Both of these blocks are children of the blue
block, meant to extend the chain by building on top of the blue block. To help us track it, one is
visualized as a red block originating from Canada, and the other is marked as a green block
originating from Australia.

Let’s assume, for example, that a miner in Canada finds a proof-of-work solution for a block "red"
that extends the blockchain, building on top of the parent block "blue." Almost simultaneously, an
Australian miner who was also extending block "blue" finds a solution for block "green," his
candidate block. Now, there are two possible blocks, one we call "red," originating in Canada, and
one we call "green," originating in Australia. Both blocks are valid, both blocks contain a valid
solution to the proof of work, and both blocks extend the same parent. Both blocks likely contain
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most of the same transactions, with only perhaps a few differences in the order of transactions.

Figure 58. Visualization of a blockchain fork event: two blocks found simultaneously

As the two blocks propagate, some nodes receive block "red" first and some receive block "green"
first. As shown in Visualization of a blockchain fork event: two blocks propagate, splitting the
network, the network splits into two different perspectives of the blockchain, one side topped with
a red block, the other with a green block.

Figure 59. Visualization of a blockchain fork event: two blocks propagate, splitting the network

From that moment, the bitcoin network nodes closest (topologically, not geographically) to the
Canadian node will hear about block "red" first and will create a new greatest-cumulative-difficulty
blockchain with "red" as the last block in the chain (e.g., blue-red), ignoring the candidate block
"green" that arrives a bit later. Meanwhile, nodes closer to the Australian node will take that block
as the winner and extend the blockchain with "green" as the last block (e.g., blue-green), ignoring
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"red" when it arrives a few seconds later. Any miners that saw "red" first will immediately build
candidate blocks that reference "red" as the parent and start trying to solve the proof of work for
these candidate blocks. The miners that accepted "green" instead will start building on top of
"green" and extending that chain.

Forks are almost always resolved within one block. As part of the network’s hashing power is
dedicated to building on top of "red" as the parent, another part of the hashing power is focused on
building on top of "green." Even if the hashing power is almost evenly split, it is likely that one set of
miners will find a solution and propagate it before the other set of miners have found any
solutions. Let’s say, for example, that the miners building on top of "green" find a new block "pink"
that extends the chain (e.g., blue-green-pink). They immediately propagate this new block and the
entire network sees it as a valid solution as shown in Visualization of a blockchain fork event: a
new block extends one fork.

Figure 60. Visualization of a blockchain fork event: a new block extends one fork

All nodes that had chosen "green" as the winner in the previous round will simply extend the chain
one more block. The nodes that chose "red" as the winner, however, will now see two chains: blue-
green-pink and blue-red. The chain blue-green-pink is now longer (more cumulative difficulty) than
the chain blue-red. As a result, those nodes will set the chain blue-green-pink as main chain and
change the blue-red chain to being a secondary chain, as shown in Visualization of a blockchain
fork event: the network reconverges on a new longest chain. This is a chain reconvergence, because
those nodes are forced to revise their view of the blockchain to incorporate the new evidence of a
longer chain. Any miners working on extending the chain blue-red will now stop that work because
their candidate block is an "orphan," as its parent "red" is no longer on the longest chain. The
transactions within "red" are queued up again for processing in the next block, because that block
is no longer in the main chain. The entire network re-converges on a single blockchain blue-green-
pink, with "pink" as the last block in the chain. All miners immediately start working on candidate
blocks that reference "pink" as their parent to extend the blue-green-pink chain.
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Figure 61. Visualization of a blockchain fork event: the network reconverges on a new longest chain

It is theoretically possible for a fork to extend to two blocks, if two blocks are found almost
simultaneously by miners on opposite "sides" of a previous fork. However, the chance of that
happening is very low. Whereas a one-block fork might occur every week, a two-block fork is
exceedingly rare.

Bitcoin’s block interval of 10 minutes is a design compromise between fast confirmation times
(settlement of transactions) and the probability of a fork. A faster block time would make
transactions clear faster but lead to more frequent blockchain forks, whereas a slower block time
would decrease the number of forks but make settlement slower.

Mining and the Hashing Race
Bitcoin mining is an extremely competitive industry. The hashing power has increased
exponentially every year of bitcoin’s existence. Some years the growth has reflected a complete
change of technology, such as in 2010 and 2011 when many miners switched from using CPU
mining to GPU mining and field programmable gate array (FPGA) mining. In 2013 the introduction
of ASIC mining lead to another giant leap in mining power, by placing the SHA256 function directly
on silicon chips specialized for the purpose of mining. The first such chips could deliver more
mining power in a single box than the entire bitcoin network in 2010.

The following list shows the total hashing power of the bitcoin network, over the first five years of
operation:

2009

0.5 MH/sec–8 MH/sec (16&#x00D7; growth)

2010

8 MH/sec–116 GH/sec (14,500&#x00D7; growth)

2011
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16 GH/sec–9 TH/sec (562&#x00D7; growth)

2012

9 TH/sec–23 TH/sec (2.5&#x00D7; growth)

2013

23 TH/sec–10 PH/sec (450&#x00D7; growth)

2014

10 PH/sec–150 PH/sec in August (15&#x00D7; growth)

In the chart in Total hashing power, gigahashes per second, over two years, we see the bitcoin
network’s hashing power increase over the past two years. As you can see, the competition between
miners and the growth of bitcoin has resulted in an exponential increase in the hashing power
(total hashes per second across the network).

Figure 62. Total hashing power, gigahashes per second, over two years

As the amount of hashing power applied to mining bitcoin has exploded, the difficulty has risen to
match it. The difficulty metric in the chart shown in Bitcoin’s mining difficulty metric, over two
years is measured as a ratio of current difficulty over minimum difficulty (the difficulty of the first
block).
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Figure 63. Bitcoin’s mining difficulty metric, over two years

In the last two years, the ASIC mining chips have become increasingly denser, approaching the
cutting edge of silicon fabrication with a feature size (resolution) of 22 nanometers (nm). Currently,
ASIC manufacturers are aiming to overtake general-purpose CPU chip manufacturers, designing
chips with a feature size of 16nm, because the profitability of mining is driving this industry even
faster than general computing. There are no more giant leaps left in bitcoin mining, because the
industry has reached the forefront of Moore’s Law, which stipulates that computing density will
double approximately every 18 months. Still, the mining power of the network continues to
advance at an exponential pace as the race for higher density chips is matched with a race for
higher density data centers where thousands of these chips can be deployed. It’s no longer about
how much mining can be done with one chip, but how many chips can be squeezed into a building,
while still dissipating the heat and providing adequate power.

The Extra Nonce Solution

Since 2012, bitcoin mining has evolved to resolve a fundamental limitation in the structure of the
block header. In the early days of bitcoin, a miner could find a block by iterating through the nonce
until the resulting hash was below the target. As difficulty increased, miners often cycled through
all 4 billion values of the nonce without finding a block. However, this was easily resolved by
updating the block timestamp to account for the elapsed time. Because the timestamp is part of the
header, the change would allow miners to iterate through the values of the nonce again with
different results. Once mining hardware exceeded 4 GH/sec, however, this approach became
increasingly difficult because the nonce values were exhausted in less than a second. As ASIC
mining equipment started pushing and then exceeding the TH/sec hash rate, the mining software
needed more space for nonce values in order to find valid blocks. The timestamp could be stretched
a bit, but moving it too far into the future would cause the block to become invalid. A new source of
"change" was needed in the block header. The solution was to use the coinbase transaction as a
source of extra nonce values. Because the coinbase script can store between 2 and 100 bytes of data,
miners started using that space as extra nonce space, allowing them to explore a much larger range
of block header values to find valid blocks. The coinbase transaction is included in the merkle tree,
which means that any change in the coinbase script causes the merkle root to change. Eight bytes of
extra nonce, plus the 4 bytes of "standard" nonce allow miners to explore a total 296 (8 followed by
28 zeros) possibilities per second without having to modify the timestamp. If, in the future, miners
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could run through all these possibilities, they could then modify the timestamp. There is also more
space in the coinbase script for future expansion of the extra nonce space.

Mining Pools

In this highly competitive environment, individual miners working alone (also known as solo
miners) don’t stand a chance. The likelihood of them finding a block to offset their electricity and
hardware costs is so low that it represents a gamble, like playing the lottery. Even the fastest
consumer ASIC mining system cannot keep up with commercial systems that stack tens of
thousands of these chips in giant warehouses near hydro-electric power stations. Miners now
collaborate to form mining pools, pooling their hashing power and sharing the reward among
thousands of participants. By participating in a pool, miners get a smaller share of the overall
reward, but typically get rewarded every day, reducing uncertainty.

Let’s look at a specific example. Assume a miner has purchased mining hardware with a combined
hashing rate of 6,000 gigahashes per second (GH/s), or 6 TH/s. In August of 2014 this equipment
costs approximately $10,000. The hardware consumes 3 kilowatts (kW) of electricity when running,
72 kW-hours a day, at a cost of $7 or $8 per day on average. At current bitcoin difficulty, the miner
will be able to solo mine a block approximately once every 155 days, or every 5 months. If the
miner does find a single block in that timeframe, the payout of 25 bitcoins, at approximately $600
per bitcoin, will result in a single payout of $15,000, which will cover the entire cost of the
hardware and the electricity consumed over the time period, leaving a net profit of approximately
$3,000. However, the chance of finding a block in a five-month period depends on the miner’s luck.
He might find two blocks in five months and make a very large profit. Or he might not find a block
for 10 months and suffer a financial loss. Even worse, the difficulty of the bitcoin proof-of-work
algorithm is likely to go up significantly over that period, at the current rate of growth of hashing
power, meaning the miner has, at most, six months to break even before the hardware is effectively
obsolete and must be replaced by more powerful mining hardware. If this miner participates in a
mining pool, instead of waiting for a once-in-five-months $15,000 windfall, he will be able to earn
approximately $500 to $750 per week. The regular payouts from a mining pool will help him
amortize the cost of hardware and electricity over time without taking an enormous risk. The
hardware will still be obsolete in six to nine months and the risk is still high, but the revenue is at
least regular and reliable over that period.

Mining pools coordinate many hundreds or thousands of miners, over specialized pool-mining
protocols. The individual miners configure their mining equipment to connect to a pool server,
after creating an account with the pool. Their mining hardware remains connected to the pool
server while mining, synchronizing their efforts with the other miners. Thus, the pool miners share
the effort to mine a block and then share in the rewards.

Successful blocks pay the reward to a pool bitcoin address, rather than individual miners. The pool
server will periodically make payments to the miners' bitcoin addresses, once their share of the
rewards has reached a certain threshold. Typically, the pool server charges a percentage fee of the
rewards for providing the pool-mining service.

Miners participating in a pool split the work of searching for a solution to a candidate block,
earning "shares" for their mining contribution. The mining pool sets a lower difficulty target for
earning a share, typically more than 1,000 times easier than the bitcoin network’s difficulty. When
someone in the pool successfully mines a block, the reward is earned by the pool and then shared
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with all miners in proportion to the number of shares they contributed to the effort.

Pools are open to any miner, big or small, professional or amateur. A pool will therefore have some
participants with a single small mining machine, and others with a garage full of high-end mining
hardware. Some will be mining with a few tens of a kilowatt of electricity, others will be running a
data center consuming a megawatt of power. How does a mining pool measure the individual
contributions, so as to fairly distribute the rewards, without the possibility of cheating? The answer
is to use bitcoin’s proof-of-work algorithm to measure each pool miner’s contribution, but set at a
lower difficulty so that even the smallest pool miners win a share frequently enough to make it
worthwhile to contribute to the pool. By setting a lower difficulty for earning shares, the pool
measures the amount of work done by each miner. Each time a pool miner finds a block header
hash that is less than the pool difficulty, she proves she has done the hashing work to find that
result. More importantly, the work to find shares contributes, in a statistically measurable way, to
the overall effort to find a hash lower than the bitcoin network’s target. Thousands of miners trying
to find low-value hashes will eventually find one low enough to satisfy the bitcoin network target.

Let’s return to the analogy of a dice game. If the dice players are throwing dice with a goal of
throwing less than four (the overall network difficulty), a pool would set an easier target, counting
how many times the pool players managed to throw less than eight. When pool players throw less
than eight (the pool share target), they earn shares, but they don’t win the game because they don’t
achieve the game target (less than four). The pool players will achieve the easier pool target much
more often, earning them shares very regularly, even when they don’t achieve the harder target of
winning the game. Every now and then, one of the pool players will throw a combined dice throw
of less than four and the pool wins. Then, the earnings can be distributed to the pool players based
on the shares they earned. Even though the target of eight-or-less wasn’t winning, it was a fair way
to measure dice throws for the players, and it occasionally produces a less-than-four throw.

Similarly, a mining pool will set a pool difficulty that will ensure that an individual pool miner can
find block header hashes that are less than the pool difficulty quite often, earning shares. Every
now and then, one of these attempts will produce a block header hash that is less than the bitcoin
network target, making it a valid block and the whole pool wins.

Managed pools

Most mining pools are "managed," meaning that there is a company or individual running a pool
server. The owner of the pool server is called the pool operator, and he charges pool miners a
percentage fee of the earnings.

The pool server runs specialized software and a pool-mining protocol that coordinates the activities
of the pool miners. The pool server is also connected to one or more full bitcoin nodes and has
direct access to a full copy of the blockchain database. This allows the pool server to validate blocks
and transactions on behalf of the pool miners, relieving them of the burden of running a full node.
For pool miners, this is an important consideration, because a full node requires a dedicated
computer with at least 15 to 20 GB of persistent storage (disk) and at least 2 GB of memory (RAM).
Furthermore, the bitcoin software running on the full node needs to be monitored, maintained, and
upgraded frequently. Any downtime caused by a lack of maintenance or lack of resources will hurt
the miner’s profitability. For many miners, the ability to mine without running a full node is
another big benefit of joining a managed pool.
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Pool miners connect to the pool server using a mining protocol such as Stratum (STM) or
GetBlockTemplate (GBT). An older standard called GetWork (GWK) has been mostly obsolete since
late 2012, because it does not easily support mining at hash rates above 4 GH/s. Both the STM and
GBT protocols create block templates that contain a template of a candidate block header. The pool
server constructs a candidate block by aggregating transactions, adding a coinbase transaction
(with extra nonce space), calculating the merkle root, and linking to the previous block hash. The
header of the candidate block is then sent to each of the pool miners as a template. Each pool miner
then mines using the block template, at a lower difficulty than the bitcoin network difficulty, and
sends any successful results back to the pool server to earn shares.

P2Pool

Managed pools create the possibility of cheating by the pool operator, who might direct the pool
effort to double-spend transactions or invalidate blocks (see Consensus Attacks). Furthermore,
centralized pool servers represent a single-point-of-failure. If the pool server is down or is slowed
by a denial-of-service attack, the pool miners cannot mine. In 2011, to resolve these issues of
centralization, a new pool mining method was proposed and implemented: P2Pool is a peer-to-peer
mining pool, without a central operator.

P2Pool works by decentralizing the functions of the pool server, implementing a parallel
blockchain-like system called a share chain. A share chain is a blockchain running at a lower
difficulty than the bitcoin blockchain. The share chain allows pool miners to collaborate in a
decentralized pool, by mining shares on the share chain at a rate of one share block every 30
seconds. Each of the blocks on the share chain records a proportionate share reward for the pool
miners who contribute work, carrying the shares forward from the previous share block. When
one of the share blocks also achieves the difficulty target of the bitcoin network, it is propagated
and included on the bitcoin blockchain, rewarding all the pool miners who contributed to all the
shares that preceded the winning share block. Essentially, instead of a pool server keeping track of
pool miner shares and rewards, the share chain allows all pool miners to keep track of all shares
using a decentralized consensus mechanism like bitcoin’s blockchain consensus mechanism.

P2Pool mining is more complex than pool mining because it requires that the pool miners run a
dedicated computer with enough disk space, memory, and Internet bandwidth to support a full
bitcoin node and the P2Pool node software. P2Pool miners connect their mining hardware to their
local P2Pool node, which simulates the functions of a pool server by sending block templates to the
mining hardware. On P2Pool, individual pool miners construct their own candidate blocks,
aggregating transactions much like solo miners, but then mine collaboratively on the share chain.
P2Pool is a hybrid approach that has the advantage of much more granular payouts than solo
mining, but without giving too much control to a pool operator like managed pools.

Recently, participation in P2Pool has increased significantly as mining concentration in mining
pools has approached levels that create concerns of a 51% attack (see Consensus Attacks). Further
development of the P2Pool protocol continues with the expectation of removing the need for
running a full node and therefore making decentralized mining even easier to use.

Even though P2Pool reduces the concentration of power by mining pool operators, it is conceivably
vulnerable to 51% attacks against the share chain itself. A much broader adoption of P2Pool does
not solve the 51% attack problem for bitcoin itself. Rather, P2Pool makes bitcoin more robust
overall, as part of a diversified mining ecosystem.
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Consensus Attacks
Bitcoin’s consensus mechanism is, at least theoretically, vulnerable to attack by miners (or pools)
that attempt to use their hashing power to dishonest or destructive ends. As we saw, the consensus
mechanism depends on having a majority of the miners acting honestly out of self-interest.
However, if a miner or group of miners can achieve a significant share of the mining power, they
can attack the consensus mechanism so as to disrupt the security and availability of the bitcoin
network.

It is important to note that consensus attacks can only affect future consensus, or at best the most
recent past (tens of blocks). Bitcoin’s ledger becomes more and more immutable as time passes.
While in theory, a fork can be achieved at any depth, in practice, the computing power needed to
force a very deep fork is immense, making old blocks practically immutable. Consensus attacks also
do not affect the security of the private keys and signing algorithm (ECDSA). A consensus attack
cannot steal bitcoins, spend bitcoins without signatures, redirect bitcoins, or otherwise change past
transactions or ownership records. Consensus attacks can only affect the most recent blocks and
cause denial-of-service disruptions on the creation of future blocks.

One attack scenario against the consensus mechanism is called the "51% attack." In this scenario a
group of miners, controlling a majority (51%) of the total network’s hashing power, collude to
attack bitcoin. With the ability to mine the majority of the blocks, the attacking miners can cause
deliberate "forks" in the blockchain and double-spend transactions or execute denial-of-service
attacks against specific transactions or addresses. A fork/double-spend attack is one where the
attacker causes previously confirmed blocks to be invalidated by forking below them and re-
converging on an alternate chain. With sufficient power, an attacker can invalidate six or more
blocks in a row, causing transactions that were considered immutable (six confirmations) to be
invalidated. Note that a double-spend can only be done on the attacker’s own transactions, for
which the attacker can produce a valid signature. Double-spending one’s own transactions is
profitable if by invalidating a transaction the attacker can get a nonreversible exchange payment or
product without paying for it.

Let’s examine a practical example of a 51% attack. In the first chapter, we looked at a transaction
between Alice and Bob for a cup of coffee. Bob, the cafe owner, is willing to accept payment for
cups of coffee without waiting for confirmation (mining in a block), because the risk of a double-
spend on a cup of coffee is low in comparison to the convenience of rapid customer service. This is
similar to the practice of coffee shops that accept credit card payments without a signature for
amounts below $25, because the risk of a credit-card chargeback is low while the cost of delaying
the transaction to obtain a signature is comparatively larger. In contrast, selling a more expensive
item for bitcoin runs the risk of a double-spend attack, where the buyer broadcasts a competing
transaction that spends the same inputs (UTXO) and cancels the payment to the merchant. A
double-spend attack can happen in two ways: either before a transaction is confirmed, or if the
attacker takes advantage of a blockchain fork to undo several blocks. A 51% attack allows attackers
to double-spend their own transactions in the new chain, thus undoing the corresponding
transaction in the old chain.

In our example, malicious attacker Mallory goes to Carol’s gallery and purchases a beautiful
triptych painting depicting Satoshi Nakamoto as Prometheus. Carol sells "The Great Fire" paintings
for $250,000 in bitcoin, to Mallory. Instead of waiting for six or more confirmations on the
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transaction, Carol wraps and hands the paintings to Mallory after only one confirmation. Mallory
works with an accomplice, Paul, who operates a large mining pool, and the accomplice launches a
51% attack as soon as Mallory’s transaction is included in a block. Paul directs the mining pool to
re-mine the same block height as the block containing Mallory’s transaction, replacing Mallory’s
payment to Carol with a transaction that double-spends the same input as Mallory’s payment. The
double-spend transaction consumes the same UTXO and pays it back to Mallory’s wallet, instead of
paying it to Carol, essentially allowing Mallory to keep the bitcoin. Paul then directs the mining pool
to mine an additional block, so as to make the chain containing the double-spend transaction longer
than the original chain (causing a fork below the block containing Mallory’s transaction). When the
blockchain fork resolves in favor of the new (longer) chain, the double-spent transaction replaces
the original payment to Carol. Carol is now missing the three paintings and also has no bitcoin
payment. Throughout all this activity, Paul’s mining pool participants might remain blissfully
unaware of the double-spend attempt, because they mine with automated miners and cannot
monitor every transaction or block.

To protect against this kind of attack, a merchant selling large-value items must wait at least six
confirmations before giving the product to the buyer. Alternatively, the merchant should use an
escrow multi-signature account, again waiting for several confirmations after the escrow account is
funded. The more confirmations elapse, the harder it becomes to invalidate a transaction with a
51% attack. For high-value items, payment by bitcoin will still be convenient and efficient even if
the buyer has to wait 24 hours for delivery, which would correspond to approximaely 144
confirmations.

In addition to a double-spend attack, the other scenario for a consensus attack is to deny service to
specific bitcoin participants (specific bitcoin addresses). An attacker with a majority of the mining
power can simply ignore specific transactions. If they are included in a block mined by another
miner, the attacker can deliberately fork and re-mine that block, again excluding the specific
transactions. This type of attack can result in a sustained denial of service against a specific address
or set of addresses for as long as the attacker controls the majority of the mining power.

Despite its name, the 51% attack scenario doesn’t actually require 51% of the hashing power. In
fact, such an attack can be attempted with a smaller percentage of the hashing power. The 51%
threshold is simply the level at which such an attack is almost guaranteed to succeed. A consensus
attack is essentially a tug-of-war for the next block and the "stronger" group is more likely to win.
With less hashing power, the probability of success is reduced, because other miners control the
generation of some blocks with their "honest" mining power. One way to look at it is that the more
hashing power an attacker has, the longer the fork he can deliberately create, the more blocks in
the recent past he can invalidate, or the more blocks in the future he can control. Security research
groups have used statistical modeling to claim that various types of consensus attacks are possible
with as little as 30% of the hashing power.

The massive increase of total hashing power has arguably made bitcoin impervious to attacks by a
single miner. There is no possible way for a solo miner to control more than a small percentage of
the total mining power. However, the centralization of control caused by mining pools has
introduced the risk of for-profit attacks by a mining pool operator. The pool operator in a managed
pool controls the construction of candidate blocks and also controls which transactions are
included. This gives the pool operator the power to exclude transactions or introduce double-spend
transactions. If such abuse of power is done in a limited and subtle way, a pool operator could
conceivably profit from a consensus attack without being noticed.
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Not all attackers will be motivated by profit, however. One potential attack scenario is where an
attacker intends to disrupt the bitcoin network without the possibility of profiting from such
disruption. A malicious attack aimed at crippling bitcoin would require enormous investment and
covert planning, but could conceivably be launched by a well-funded, most likely state-sponsored,
attacker. Alternatively, a well-funded attacker could attack bitcoin’s consensus by simultaneously
amassing mining hardware, compromising pool operators and attacking other pools with denial-of-
service. All of these scenarios are theoretically possible, but increasingly impractical as the bitcoin
network’s overall hashing power continues to grow exponentially.

Undoubtedly, a serious consensus attack would erode confidence in bitcoin in the short term,
possibly causing a significant price decline. However, the bitcoin network and software are
constantly evolving, so consensus attacks would be met with immediate countermeasures by the
bitcoin community, making bitcoin hardier, stealthier, and more robust than ever.

Alternative Chains, Currencies, and
Applications
Bitcoin was the result of 20 years of research in distributed systems and currencies and brought a
revolutionary new technology into the space: the decentralized consensus mechanism based on
proof of work. This invention at the heart of bitcoin has ushered a wave of innovation in
currencies, financial services, economics, distributed systems, voting systems, corporate
governance, and contracts.

In this chapter we’ll examine the many offshoots of the bitcoin and blockchain inventions: the
alternative chains, currencies, and applications built since the introduction of this technology in
2009. Mostly, we will look at alternative coins, or alt coins, which are digital currencies
implemented using the same design pattern as bitcoin, but with a completely separate blockchain
and network.

For every alt coin mentioned in this chapter, 50 or more will go unmentioned, eliciting howls of
anger from their creators and fans. The purpose of this chapter is not to evaluate or qualify alt
coins, or even to mention the most significant ones based on some subjective assessment. Instead,
we will highlight a few examples that show the breadth and variety of the ecosystem, noting the
first-of-a-kind for each innovation or significant differentiation. Some of the most interesting
examples of alt coins are in fact complete failures from a monetary perspective. That perhaps
makes them even more interesting for study and highlights the fact that this chapter is not to be
used as an investment guide.

With new coins introduced every day, it would be impossible not to miss some important coin,
perhaps the one that changes history. The rate of innovation is what makes this space so exciting
and guarantees this chapter will be incomplete and out-of-date as soon as it is published.

A Taxonomy of Alternative Currencies and Chains
Bitcoin is an open source project, and its code has been used as the basis for many other software
projects. The most common form of software spawned from bitcoin’s source code are alternative
decentralized currencies, or alt coins, which use the same basic building blocks to implement
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digital currencies.

There are a number of protocol layers implemented on top of bitcoin’s blockchain. These meta
coins, meta chains, or blockchain apps use the blockchain as an application platform or extend the
bitcoin protocol by adding protocol layers. Examples include Colored Coins, Mastercoin, NXT, and
Counterparty.

In the next section we will examine a few notable alt coins, such as Litecoin, Dogecoin, Freicoin,
Primecoin, Peercoin, Darkcoin, and Zerocoin. These alt coins are notable for historical reasons or
because they are good examples for a specific type of alt coin innovation, not because they are the
most valuable or "best" alt coins.

In addition to the alt coins, there are also a number of alternative blockchain implementations that
are not really "coins," which I call alt chains. These alt chains implement a consensus algorithm and
distributed ledger as a platform for contracts, name registration, or other applications. Alt chains
use the same basic building blocks and sometimes also use a currency or token as a payment
mechanism, but their primary purpose is not currency. We will look at Namecoin and Ethereum as
examples of alt chains.

Finally, there are a number of bitcoin contenders that offer digital currency or digital payment
networks, but without using a decentralized ledger or consensus mechanism based on proof of
work, such as Ripple and others. These non–blockchain technologies are outside the scope of this
book and will not be covered in this chapter.

Meta Coin Platforms
Meta coins and meta chains are software layers implemented on top of bitcoin, either
implementing a currency-inside-a-currency, or a platform/protocol overlay inside the bitcoin
system. These function layers extend the core bitcoin protocol and add features and capabilities by
encoding additional data inside bitcoin transactions and bitcoin addresses. The first
implementations of meta coins used various hacks to add metadata to the bitcoin blockchain, such
as using bitcoin addresses to encode data or using unused transaction fields (e.g., the transaction
sequence field) to encode metadata about the added protocol layer. Since the introduction of the
OP_RETURN transaction scripting opcode, the meta coins have been able to record metadata more
directly in the blockchain, and most are migrating to using that instead.

Colored Coins

Colored coins is a meta protocol that overlays information on small amounts of bitcoin. A "colored"
coin is an amount of bitcoin repurposed to express another asset. Imagine, for example, taking a $1
note and putting a stamp on it that said, "This is a 1 share certificate of Acme Inc." Now the $1
serves two purposes: it is a currency note and also a share certificate. Because it is more valuable as
a share, you would not want to use it to buy candy, so effectively it is no longer useful as currency.
Colored coins work in the same way by converting a specific, very small amount of bitcoin into a
traded certificate that represents another asset. The term "color" refers to the idea of giving special
meaning through the addition of an attribute such as a color—it is a metaphor, not an actual color
association. There are no colors in colored coins.

Colored coins are managed by specialized wallets that record and interpret the metadata attached
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to the colored bitcoins. Using such a wallet, the user will convert an amount of bitcoins from
uncolored currency into colored coins by adding a label that has a special meaning. For example, a
label could represent stock certificates, coupons, real property, commodities, or collectible tokens. It
is entirely up to the users of colored coins to assign and interpret the meaning of the "color"
associated with specific coins. To color the coins, the user defines the associated metadata, such as
the type of issuance, whether it can be subdivided into smaller units, a symbol and description, and
other related information. Once colored, these coins can be bought and sold, subdivided, and
aggregated, and receive dividend payments. The colored coins can also be "uncolored" by removing
the special association and redeemed for their face value in bitcoin.

To demonstrate the use of colored coins, we have created a set of 20 colored coins with symbol
"MasterBTC" that represent coupons for a free copy of this book shown in The metadata profile of
the colored coins recorded as a coupon for a free copy of the book. Each unit of MasterBTC,
represented by these colored coins, can now be sold or given to any bitcoin user with a colored-
coin-capable wallet, who can then transfer them to others or redeem them with the issuer for a free
copy of the book. This example of colored coins can be seen here.

Example 31. The metadata profile of the colored coins recorded as a coupon for a free copy of the book

{
  "source_addresses": [
    "3NpZmvSPLmN2cVFw1pY7gxEAVPCVfnWfVD"
  ],
  "contract_url":
"https://www.coinprism.info/asset/3NpZmvSPLmN2cVFw1pY7gxEAVPCVfnWfVD",
  "name_short": "MasterBTC",
  "name": "Free copy of \"Mastering Bitcoin\"",
  "issuer": "Andreas M. Antonopoulos",
  "description": "This token is redeemable for a free copy of the book \"Mastering
Bitcoin\"",
  "description_mime": "text/x-markdown; charset=UTF-8",
  "type": "Other",
  "divisibility": 0,
  "link_to_website": false,
  "icon_url": null,
  "image_url": null,
  "version": "1.0"
}

Mastercoin

Mastercoin is a protocol layer on top of bitcoin that supports a platform for various applications
extending the bitcoin system. Mastercoin uses the currency MST as a token for conducting
Mastercoin transactions but it is not primarily a currency. Rather, it is a platform for building other
things, such as user currencies, smart property tokens, de-centralized asset exchanges, and
contracts. Think of Mastercoin as an application-layer protocol on top of bitcoin’s financial
transaction transport layer, just like HTTP runs on top of TCP.
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Mastercoin operates primarily through transactions sent to and from a special bitcoin address
called the "exodus" address (1EXoDusjGwvnjZUyKkxZ4UHEf77z6A5S4P), just like HTTP uses a
specific TCP port (port 80) to differentiate its traffic from the rest of the TCP traffic. The Mastercoin
protocol is gradually transitioning from using the specialized exodus address and multi-signatures
to using the OP_RETURN bitcoin operator to encode transaction metadata.

Counterparty

Counterparty is another protocol layer implemented on top of bitcoin. Counterparty enables user
currencies, tradable tokens, financial instruments, decentralized asset exchanges, and other
features. Counterparty is implemented primarily using the OP_RETURN operator in bitcoin’s
scripting language to record metadata that enhances bitcoin transactions with additional meaning.
Counterparty uses the currency XCP as a token for conducting Counterparty transactions.

Alt Coins
The vast majority of alt coins are derived from bitcoin’s source code, also known as "forks." Some
are implemented "from scratch" based on the blockchain model but without using any of bitcoin’s
source code. Alt coins and alt chains (in the next section) are both separate implementations of
blockchain technology and both forms use their own blockchain. The difference in the terms is to
indicate that alt coins are primarily used as currency, whereas alt chains are used for other
purposes, not primarily currency.

Strictly speaking, the first major "alt" fork of bitcoin’s code was not an alt coin but the alt chain
Namecoin, which we will discuss in the next section.

Based on the date of announcement, the first alt coin that was a fork of bitcoin appeared in August
2011; it was called IXCoin. IXCoin modified a few of the bitcoin parameters, specifically accelerating
the creation of currency by increasing the reward to 96 coins per block.

In September 2011, Tenebrix was launched. Tenebrix was the first cryptocurrency to implement an
alternative proof-of-work algorithm, namely scrypt, an algorithm originally designed for password
stretching (brute-force resistance). The stated goal of Tenebrix was to make a coin that was
resistant to mining with GPUs and ASICs, by using a memory-intensive algorithm. Tenebrix did not
succeed as a currency, but it was the basis for Litecoin, which has enjoyed great success and has
spawned hundreds of clones.

Litecoin, in addition to using scrypt as the proof-of-work algorithm, also implemented a faster
block-generation time, targeted at 2.5 minutes instead of bitcoin’s 10 minutes. The resulting
currency is touted as "silver to bitcoin’s gold" and is intended as a light-weight alternative currency.
Due to the faster confirmation time and the 84 million total currency limit, many adherents of
Litecoin believe it is better suited for retail transactions than bitcoin.

Alt coins continued to proliferate in 2011 and 2012, either based on bitcoin or on Litecoin.By 2013,
there were 20 alt coins vying for position in the market. By the end of 2013, this number had
exploded to 200, with 2013 quickly becoming the "year of the alt coins." The growth of alt coins
continued in 2014, with more than 500 alt coins in existence at the time of writing. More than half
the alt coins today are clones of Litecoin.
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Creating an alt coin is easy, which is why there are now more than 500 of them. Most of the alt coins
differ very slightly from bitcoin and do not offer anything worth studying. Many are in fact just
attempts to enrich their creators. Among the copycats and pump-and-dump schemes, there are,
however, some notable exceptions and very important innovations. These alt coins take radically
different approaches or add significant innovation to bitcoin’s design pattern. There are three
primary areas where these alt coins differentiate from bitcoin:

• Different monetary policy

• Different proof of work or consensus mechanism

• Specific features, such as strong anonymity

For more information, see this graphical timeline of alt coins and alt chains.

Evaluating an Alt Coin

With so many alt coins out there, how does one decide which ones are worthy of attention? Some
alt coins attempt to achieve broad distribution and use as currencies. Others are laboratories for
experimenting on different features and monetary models. Many are just get-rich-quick schemes by
their creators. To evaluate alt coins, I look at their defining characteristics and their market metrics.

Here are some questions to ask about how well an alt coin differentiates from bitcoin:

• Does the alt coin introduce a significant innovation?

• Is the difference compelling enough to attract users away from bitcoin?

• Does the alt coin address an interesting niche market or application?

• Can the alt coin attract enough miners to be secured against consensus attacks?

Here are some of the key financial and market metrics to consider:

• What is the total market capitalization of alt coin?

• How many estimated users/wallets does the alt coin have?

• How many merchants accept the alt coin?

• How many daily transactions (volume) are executed on the alt coin?

• How much value is transacted daily?

In this chapter, we will concentrate primarily on the technical characteristics and innovation
potential of alt coins represented by the first set of questions.

Monetary Parameter Alternatives: Litecoin, Dogecoin, Freicoin

Bitcoin has a few monetary parameters that give it distinctive characteristics of a deflationary
fixed-issuance currency. It is limited to 21 million major currency units (or 21 quadrillion minor
units), it has a geometrically declining issuance rate, and it has a 10-minute block "heartbeat,"
which controls the speed of transaction confirmation and currency generation. Many alt coins have
tweaked the primary parameters to achieve different monetary policies. Among the hundreds of alt
coins, some of the most notable examples include the following.
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Litecoin

One of the first alt coins, released in 2011, Litecoin is the second most successful digital currency
after bitcoin. Its primary innovations were the use of scrypt as the proof-of-work algorithm
(inherited from Tenebrix) and its faster/lighter currency parameters.

• Block generation time: 2.5 minutes

• Total currency: 84 million coins by 2140

• Consensus algorithm: Scrypt proof of work

• Market capitalization: $160 million in mid-2014

Dogecoin

Dogecoin was released in December 2013, based on a fork of Litecoin. Dogecoin is notable because
it has a monetary policy of rapid issuance and a very high currency cap, to encourage spending and
tipping. Dogecoin is also notable because it was started as a joke but became quite popular, with a
large and active community, before declining rapidly in 2014.

• Block generation time: 60 seconds

• Total currency: 100,000,000,000 (100 billion) Doge by 2015

• Consensus algorithm: Scrypt proof of work

• Market capitalization: $12 million in mid-2014

Freicoin

Freicoin was introduced in July 2012. It is a demurrage currency, meaning it has a negative interest
rate for stored value. Value stored in Freicoin is assessed a 4.5% APR fee, to encourage consumption
and discourage hoarding of money. Freicoin is notable in that it implements a monetary policy that
is the exact opposite of Bitcoin’s deflationary policy. Freicoin has not seen success as a currency, but
it is an interesting example of the variety of monetary policies that can be expressed by alt coins.

• Block generation: 10 minutes

• Total currency: 100 million coins by 2140

• Consensus algorithm: SHA256 proof of work

• Market capitalization: $130,000 in mid-2014

Consensus Innovation: Peercoin, Myriad, Blackcoin, Vericoin, NXT

Bitcoin’s consensus mechanism is based on proof of work using the SHA256 algorithm. The first alt
coins introduced scrypt as an alternative proof-of-work algorithm, as a way to make mining more
CPU-friendly and less susceptible to centralization with ASICs. Since then, innovation in the
consensus mechanism has continued at a frenetic pace. Several alt coins adopted a variety of
algorithms such as scrypt, scrypt-N, Skein, Groestl, SHA3, X11, Blake, and others. Some alt coins
combined multiple algorithms for proof of work. In 2013, we saw the invention of an alternative to
proof of work, called proof of stake, which forms the basis of many modern alt coins.
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Proof of stake is a system by which existing owners of a currency can "stake" currency as interest-
bearing collateral. Somewhat like a certificate of deposit (CD), participants can reserve a portion of
their currency holdings, while earning an investment return in the form of new currency (issued as
interest payments) and transaction fees.

Peercoin

Peercoin was introduced in August 2012 and is the first alt coin to use a hybrid proof-of-work and
proof-of-stake algorithm to issue new currency.

• Block generation: 10 minutes

• Total currency: No limit

• Consensus algorithm: (Hybrid) proof-of-stake with initial proof-of-work

• Market capitalization: $14 million in mid-2014

Myriad

Myriad was introduced in February 2014 and is notable because it uses five different proof-of-work
algorithms (SHA256d, Scrypt, Qubit, Skein, or Myriad-Groestl) simultaneously, with difficulty
varying for each algorithm depending on miner participation. The intent is to make Myriad
immune to ASIC specialization and centralization as well as much more resistant to consensus
attacks, because multiple mining algorithms would have to be attacked simultaneously.

• Block generation: 30-second average (2.5 minutes target per mining algorithm)

• Total currency: 2 billion by 2024

• Consensus algorithm: Multi-algorithm proof-of-work

• Market capitalization: $120,000 in mid-2014

Blackcoin

Blackcoin was introduced in February 2014 and uses a proof-of-stake consensus algorithm. It is also
notable for introducing "multipools," a type of mining pool that can switch between different alt
coins automatically, depending on profitability.

• Block generation: 1 minute

• Total currency: No limit

• Consensus algorithm: Proof-of-stake

• Market capitalization: $3.7 million in mid-2014

VeriCoin

VeriCoin was launched in May 2014. It uses a proof-of-stake consensus algorithm with a variable
interest rate that dynamically adjusts based on market forces of supply and demand. It also is the
first alt coin featuring auto-exchange to bitcoin for payment in bitcoin from the wallet.

• Block generation: 1 minute
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• Total currency: No limit

• Consensus algorithm: Proof-of-stake

• Market capitalization: $1.1 million in mid-2014

NXT

NXT (pronounced "Next") is a "pure" proof-of-stake alt coin, in that it does not use proof-of-work
mining. NXT is a from-scratch implementation of a cryptocurrency, not a fork of bitcoin or any
other alt coins. NXT implements many advanced features, including a name registry (similar to
Namecoin), a decentralized asset exchange (similar to Colored Coins), integrated decentralized and
secure messaging (similar to Bitmessage), and stake delegation (to delegate proof-of-stake to others).
NXT adherents call it a "next-generation" or 2.0 cryptocurrency.

• Block generation: 1 minute

• Total currency: No limit

• Consensus algorithm: Proof-of-stake

• Market capitalization: $30 million in mid-2014

Dual-Purpose Mining Innovation: Primecoin, Curecoin, Gridcoin

Bitcoin’s proof-of-work algorithm has just one purpose: securing the bitcoin network. Compared to
traditional payment system security, the cost of mining is not very high. However, it has been
criticized by many as being “wasteful." The next generation of alt coins attempt to address this
concern. Dual-purpose proof-of-work algorithms solve a specific "useful" problem, while producing
proof of work to secure the network. The risk of adding an external use to the currency’s security is
that it also adds external influence to the supply/demand curve.

Primecoin

Primecoin was announced in July 2013. Its proof-of-work algorithm searches for prime numbers,
computing Cunningham and bi-twin prime chains. Prime numbers are useful in a variety of
scientific disciplines. The Primecoin blockchain contains the discovered prime numbers, thereby
producing a public record of scientific discovery in parallel to the public ledger of transactions.

• Block generation: 1 minute

• Total currency: No limit

• Consensus algorithm: Proof of work with prime number chain discovery

• Market capitalization: $1.3 million in mid-2014

Curecoin

Curecoin was announced in May 2013. It combines a SHA256 proof-of-work algorithm with protein-
folding research through the Folding@Home project. Protein folding is a computationally intensive
simulation of biochemical interactions of proteins, used to discover new drug targets for curing
diseases.
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• Block generation: 10 minutes

• Total currency: No limit

• Consensus algorithm: Proof of work with protein-folding research

• Market capitalization: $58,000 in mid-2014

Gridcoin

Gridcoin was introduced in October 2013. It supplements scrypt-based proof of work with subsidies
for participation in BOINC open grid computing. BOINC—Berkeley Open Infrastructure for Network
Computing—is an open protocol for scientific research grid computing, which allows participants
to share their spare computing cycles for a broad range of academic research computing. Gridcoin
uses BOINC as a general-purpose computing platform, rather than to solve specific science
problems such as prime numbers or protein folding.

• Block generation: 150 seconds

• Total currency: No limit

• Consensus algorithm: Proof-of-work with BOINC grid computing subsidy

• Market capitalization: $122,000 in mid-2014

Anonymity-Focused Alt Coins: CryptoNote, Bytecoin, Monero,
Zerocash/Zerocoin, Darkcoin

Bitcoin is often mistakenly characterized as "anonymous" currency. In fact, it is relatively easy to
connect identities to bitcoin addresses and, using big-data analytics, connect addresses to each
other to form a comprehensive picture of someone’s bitcoin spending habits. Several alt coins aim
to address this issue directly by focusing on strong anonymity. The first such attempt is most likely
Zerocoin, a meta-coin protocol for preserving anonymity on top of bitcoin, introduced with a paper
at the 2013 IEEE Symposium on Security and Privacy. Zerocoin will be implemented as a completely
separate alt coin called Zerocash, in development at time of writing. An alternative approach to
anonymity was launched with CryptoNote in a paper published in October 2013. CryptoNote is a
foundational technology that is implemented by a number of alt coin forks discussed next. In
addition to Zerocash and CryptoNotes, there are several other independent anonymous coins, such
as Darkcoin, that use stealth addresses or transaction re-mixing to deliver anonymity.

Zerocoin/Zerocash

Zerocoin is a theoretical approach to digital currency anonymity introduced in 2013 by researchers
at Johns Hopkins. Zerocash is an alt-coin implementation of Zerocoin that is in development and
not yet released.

CryptoNote

CryptoNote is a reference implementation alt coin that provides the basis for anonymous digital
cash. It was introduced in October 2013. It is designed to be forked into different implementations
and has a built-in periodic reset mechanism that makes it unusable as a currency itself. Several alt
coins have been spawned from CryptoNote, including Bytecoin (BCN), Aeon (AEON), Boolberry
(BBR), duckNote (DUCK), Fantomcoin (FCN), Monero (XMR), MonetaVerde (MCN), and Quazarcoin
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(QCN). CryptoNote is also notable for being a complete ground-up implementation of a crypto-
currency, not a fork of bitcoin.

Bytecoin

Bytecoin was the first implementation spawned from CryptoNote, offering a viable anonymous
currency based on the CryptoNote technology. Bytecoin was launched in July 2012. Note that there
was a previous alt coin named Bytecoin with currency symbol BTE, whereas the CryptoNote-
derived Bytecoin has the currency symbol BCN. Bytecoin uses the Cryptonight proof-of-work
algorithm, which requires access to at least 2 MB of RAM per instance, making it unsuitable for GPU
or ASIC mining. Bytecoin inherits ring signatures, unlinkable transactions, and blockchain
analysis–resistant anonymity from CryptoNote.

• Block generation: 2 minutes

• Total currency: 184 billion BCN

• Consensus algorithm: Cryptonight proof of work

• Market capitalization: $3 million in mid-2014

Monero

Monero is another implementation of CryptoNote. It has a slightly flatter issuance curve than
Bytecoin, issuing 80% of the currency in the first four years. It offers the same anonymity features
inherited from CryptoNote.

• Block generation: 1 minute

• Total currency: 18.4 million XMR

• Consensus algorithm: Cryptonight proof of work

• Market capitalization: $5 million in mid-2014

Darkcoin

Darkcoin was launched in January 2014. Darkcoin implements anonymous currency using a re-
mixing protocol for all transactions called DarkSend. Darkcoin is also notable for using 11 rounds of
different hash functions (blake, bmw, groestl, jh, keccak, skein, luffa, cubehash, shavite, simd, echo)
for the proof-of-work algorithm.

• Block generation: 2.5 minutes

• Total currency: Maximum 22 million DRK

• Consensus algorithm: Multi-algorithm multi-round proof of work

• Market capitalization: $19 million in mid-2014

Noncurrency Alt Chains
Alt chains are alternative implementations of the blockchain design pattern, which are not
primarily used as currency. Many include a currency, but the currency is used as a token for
allocating something else, such as a resource or a contract. The currency, in other words, is not the
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main point of the platform; it is a secondary feature.

Namecoin

Namecoin was the first fork of the bitcoin code. Namecoin is a decentralized key-value registration
and transfer platform using a blockchain. It supports a global domain-name registry similar to the
domain-name registration system on the Internet. Namecoin is currently used as an alternative
domain name service (DNS) for the root-level domain .bit. Namecoin also can be used to register
names and key-value pairs in other namespaces; for storing things like email addresses, encryption
keys, SSL certificates, file signatures, voting systems, stock certificates; and a myriad of other
applications.

The Namecoin system includes the Namecoin currency (symbol NMC), which is used to pay
transaction fees for registration and transfer of names. At current prices, the fee to register a name
is 0.01 NMC or approximately 1 US cent. As in bitcoin, the fees are collected by namecoin miners.

Namecoin’s basic parameters are the same as bitcoin’s:

• Block generation: 10 minutes

• Total currency: 21 million NMC by 2140

• Consensus algorithm: SHA256 proof of work

• Market capitalization: $10 million in mid-2014

Namecoin’s namespaces are not restricted, and anyone can use any namespace in any way.
However, certain namespaces have an agreed-upon specification so that when it is read from the
blockchain, application-level software knows how to read and proceed from there. If it is
malformed, then whatever software you used to read from the specific namespace will throw an
error. Some of the popular namespaces are:

• d/ is the domain-name namespace for .bit domains

• id/ is the namespace for storing person identifiers such as email addresses, PGP keys, and so on

• u/ is an additional, more structured specification to store identities (based on openspecs)

The Namecoin client is very similar to Bitcoin Core, because it is derived from the same source
code. Upon installation, the client will download a full copy of the Namecoin blockchain and then
will be ready to query and register names. There are three main commands:

name_new

Query or preregister a name

name_firstupdate

Register a name and make the registration public

name_update

Change the details or refresh a name registration

For example, to register the domain mastering-bitcoin.bit, we use the command name_new as
follows:
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$ namecoind name_new d/mastering-bitcoin

[
    "21cbab5b1241c6d1a6ad70a2416b3124eb883ac38e423e5ff591d1968eb6664a",
    "a05555e0fc56c023"
]

The name_new command registers a claim on the name, by creating a hash of the name with a
random key. The two strings returned by name_new are the hash and the random key
(a05555e0fc56c023 in the preceding example) that can be used to make the name registration
public. Once that claim has been recorded on the Namecoin blockchain it can be converted to a
public registration with the name_firstupdate command, by supplying the random key:

$ namecoind name_firstupdate d/mastering-bitcoin a05555e0fc56c023 "{"map": {"www":
{"ip":"1.2.3.4"}}}}"
b7a2e59c0a26e5e2664948946ebeca1260985c2f616ba579e6bc7f35ec234b01

This example will map the domain name www.mastering-bitcoin.bit to IP address 1.2.3.4. The hash
returned is the transaction ID that can be used to track this registration. You can see what names
are registered to you by running the name_list command:

$ namecoind name_list

[
    {
        "name" : "d/mastering-bitcoin",
        "value" : "{map: {www: {ip:1.2.3.4}}}}",
        "address" : "NCccBXrRUahAGrisBA1BLPWQfSrups8Geh",
        "expires_in" : 35929
    }
]

Namecoin registrations need to be updated every 36,000 blocks (approximately 200 to 250 days).
The name_update command has no fee and therefore renewing domains in Namecoin is free.
Third-party providers can handle registration, automatic renewal, and updating via a web
interface, for a small fee. With a third-party provider you avoid the need to run a Namecoin client,
but you lose the independent control of a decentralized name registry offered by Namecoin.

Ethereum

Ethereum is a Turing-complete contract processing and execution platform based on a blockchain
ledger. It is not a clone of Bitcoin, but a completely independent design and implementation.
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Ethereum has a built-in currency, called ether, which is required in order to pay for contract
execution. Ethereum’s blockchain records contracts, which are expressed in a low-level, byte
code–like, Turing-complete language. Essentially, a contract is a program that runs on every node in
the Ethereum system. Ethereum contracts can store data, send and receive ether payments, store
ether, and execute an infinite range (hence Turing-complete) of computable actions, acting as
decentralized autonomous software agents.

Ethereum can implement quite complex systems that are otherwise implemented as alt chains
themselves. For example, the following is a Namecoin-like name registration contract written in
Ethereum (or more accurately, written in a high-level language that can be compiled to Ethereum
code):

if !contract.storage[msg.data[0]]: # Is the key not yet taken?
    # Then take it!
    contract.storage[msg.data[0]] = msg.data[1]
    return(1)
else:

    return(0) // Otherwise do nothing

Future of Currencies
The future of cryptographic currencies overall is even brighter than the future of bitcoin. Bitcoin
introduced a completely new form of decentralized organization and consensus that has spawned
hundreds of incredible innovations. These inventions will likely affect broad sectors of the
economy, from distributed systems science to finance, economics, currencies, central banking, and
corporate governance. Many human activities that previously required centralized institutions or
organizations to function as authoritative or trusted points of control can now be decentralized.
The invention of the blockchain and consensus system will significantly reduce the cost of
organization and coordination on large-scale systems, while removing opportunities for
concentration of power, corruption, and regulatory capture.

Bitcoin Security
Securing bitcoin is challenging because bitcoin is not an abstract reference to value, like a balance
in a bank account. Bitcoin is very much like digital cash or gold. You’ve probably heard the
expression, "Possession is nine-tenths of the law." Well, in bitcoin, possession is ten-tenths of the
law. Possession of the keys to unlock the bitcoin is equivalent to possession of cash or a chunk of
precious metal. You can lose it, misplace it, have it stolen, or accidentally give the wrong amount to
someone. In every one of these cases, users have no recourse, just as if they dropped cash on a
public sidewalk.

However, bitcoin has capabilities that cash, gold, and bank accounts do not. A bitcoin wallet,
containing your keys, can be backed up like any file. It can be stored in multiple copies, even
printed on paper for hard-copy backup. You can’t "back up" cash, gold, or bank accounts. Bitcoin is
different enough from anything that has come before that we need to think about bitcoin security
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in a novel way too.

Security Principles
The core principle in bitcoin is decentralization and it has important implications for security. A
centralized model, such as a traditional bank or payment network, depends on access control and
vetting to keep bad actors out of the system. By comparison, a decentralized system like bitcoin
pushes the responsibility and control to the users. Because security of the network is based on
proof of work, not access control, the network can be open and no encryption is required for
bitcoin traffic.

On a traditional payment network, such as a credit card system, the payment is open-ended
because it contains the user’s private identifier (the credit card number). After the initial charge,
anyone with access to the identifier can "pull" funds and charge the owner again and again. Thus,
the payment network has to be secured end-to-end with encryption and must ensure that no
eavesdroppers or intermediaries can compromise the payment traffic, in transit or when it is
stored (at rest). If a bad actor gains access to the system, he can compromise current transactions
and payment tokens that can be used to create new transactions. Worse, when customer data is
compromised, the customers are exposed to identity theft and must take action to prevent
fraudulent use of the compromised accounts.

Bitcoin is dramatically different. A bitcoin transaction authorizes only a specific value to a specific
recipient and cannot be forged or modified. It does not reveal any private information, such as the
identities of the parties, and cannot be used to authorize additional payments. Therefore, a bitcoin
payment network does not need to be encrypted or protected from eavesdropping. In fact, you can
broadcast bitcoin transactions over an open public channel, such as unsecured WiFi or Bluetooth,
with no loss of security.

Bitcoin’s decentralized security model puts a lot of power in the hands of the users. With that
power comes responsibility for maintaining the secrecy of the keys. For most users that is not easy
to do, especially on general-purpose computing devices such as Internet-connected smartphones or
laptops. Although bitcoin’s decentralized model prevents the type of mass compromise seen with
credit cards, many users are not able to adequately secure their keys and get hacked, one by one.

Developing Bitcoin Systems Securely

The most important principle for bitcoin developers is decentralization. Most developers will be
familiar with centralized security models and might be tempted to apply these models to their
bitcoin applications, with disastrous results.

Bitcoin’s security relies on decentralized control over keys and on independent transaction
validation by miners. If you want to leverage Bitcoin’s security, you need to ensure that you remain
within the Bitcoin security model. In simple terms: don’t take control of keys away from users and
don’t take transactions off the blockchain.

For example, many early bitcoin exchanges concentrated all user funds in a single "hot" wallet with
keys stored on a single server. Such a design removes control from users and centralizes control
over keys in a single system. Many such systems have been hacked, with disastrous consequences
for their customers.
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Another common mistake is to take transactions "off blockchain" in a misguided effort to reduce
transaction fees or accelerate transaction processing. An "off blockchain" system will record
transactions on an internal, centralized ledger and only occasionally synchronize them to the
bitcoin blockchain. This practice, again, substitutes decentralized bitcoin security with a
proprietary and centralized approach. When transactions are off blockchain, improperly secured
centralized ledgers can be falsified, diverting funds and depleting reserves, unnoticed.

Unless you are prepared to invest heavily in operational security, multiple layers of access control,
and audits (as the traditional banks do) you should think very carefully before taking funds outside
of Bitcoin’s decentralized security context. Even if you have the funds and discipline to implement a
robust security model, such a design merely replicates the fragile model of traditional financial
networks, plagued by identity theft, corruption, and embezzlement. To take advantage of Bitcoin’s
unique decentralized security model, you have to avoid the temptation of centralized architectures
that might feel familiar but ultimately subvert Bitcoin’s security.

The Root of Trust

Traditional security architecture is based upon a concept called the root of trust, which is a trusted
core used as the foundation for the security of the overall system or application. Security
architecture is developed around the root of trust as a series of concentric circles, like layers in an
onion, extending trust outward from the center. Each layer builds upon the more-trusted inner
layer using access controls, digital signatures, encryption, and other security primitives. As
software systems become more complex, they are more likely to contain bugs, which make them
vulnerable to security compromise. As a result, the more complex a software system becomes, the
harder it is to secure. The root of trust concept ensures that most of the trust is placed within the
least complex part of the system, and therefore least vulnerable, parts of the system, while more
complex software is layered around it. This security architecture is repeated at different scales, first
establishing a root of trust within the hardware of a single system, then extending that root of trust
through the operating system to higher-level system services, and finally across many servers
layered in concentric circles of diminishing trust.

Bitcoin security architecture is different. In Bitcoin, the consensus system creates a trusted public
ledger that is completely decentralized. A correctly validated blockchain uses the genesis block as
the root of trust, building a chain of trust up to the current block. Bitcoin systems can and should
use the blockchain as their root of trust. When designing a complex bitcoin application that consists
of services on many different systems, you should carefully examine the security architecture in
order to ascertain where trust is being placed. Ultimately, the only thing that should be explicitly
trusted is a fully validated blockchain. If your application explicitly or implicitly vests trust in
anything but the blockchain, that should be a source of concern because it introduces vulnerability.
A good method to evaluate the security architecture of your application is to consider each
individual component and evaluate a hypothetical scenario where that component is completely
compromised and under the control of a malicious actor. Take each component of your application,
in turn, and assess the impacts on the overall security if that component is compromised. If your
application is no longer secure when components are compromised, that shows you have
misplaced trust in those components. A bitcoin application without vulnerabilities should be
vulnerable only to a compromise of the bitcoin consensus mechanism, meaning that its root of trust
is based on the strongest part of the bitcoin security architecture.
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The numerous examples of hacked bitcoin exchanges serve to underscore this point because their
security architecture and design fails even under the most casual scrutiny. These centralized
implementations had invested trust explicitly in numerous components outside the bitcoin
blockchain, such as hot wallets, centralized ledger databases, vulnerable encryption keys, and
similar schemes.

User Security Best Practices
Humans have used physical security controls for thousands of years. By comparison, our
experience with digital security is less than 50 years old. Modern general-purpose operating
systems are not very secure and not particularly suited to storing digital money. Our computers are
constantly exposed to external threats via always-on Internet connections. They run thousands of
software components from hundreds of authors, often with unconstrained access to the user’s files.
A single piece of rogue software, among the many thousands installed on your computer, can
compromise your keyboard and files, stealing any bitcoin stored in wallet applications. The level of
computer maintenance required to keep a computer virus-free and trojan-free is beyond the skill
level of all but a tiny minority of computer users.

Despite decades of research and advancements in information security, digital assets are still
woefully vulnerable to a determined adversary. Even the most highly protected and restricted
systems, in financial services companies, intelligence agencies, and defense contractors, are
frequently breached. Bitcoin creates digital assets that have intrinsic value and can be stolen and
diverted to new owners instantly and irrevocably. This creates a massive incentive for hackers.
Until now, hackers had to convert identity information or account tokens—such as credit cards, and
bank accounts—into value after compromising them. Despite the difficulty of fencing and
laundering financial information, we have seen ever-escalating thefts. Bitcoin escalates this
problem because it doesn’t need to be fenced or laundered; it is intrinsic value within a digital
asset.

Fortunately, bitcoin also creates the incentives to improve computer security. Whereas previously
the risk of computer compromise was vague and indirect, bitcoin makes these risks clear and
obvious. Holding bitcoin on a computer serves to focus the user’s mind on the need for improved
computer security. As a direct result of the proliferation and increased adoption of bitcoin and
other digital currencies, we have seen an escalation in both hacking techniques and security
solutions. In simple terms, hackers now have a very juicy target and users have a clear incentive to
defend themselves.

Over the past three years, as a direct result of bitcoin adoption, we have seen tremendous
innovation in the realm of information security in the form of hardware encryption, key storage
and hardware wallets, multi-signature technology, and digital escrow. In the following sections we
will examine various best practices for practical user security.

Physical Bitcoin Storage

Because most users are far more comfortable with physical security than information security, a
very effective method for protecting bitcoins is to convert them into physical form. Bitcoin keys are
nothing more than long numbers. This means that they can be stored in a physical form, such as
printed on paper or etched on a metal coin. Securing the keys then becomes as simple as physically
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securing the printed copy of the bitcoin keys. A set of bitcoin keys that is printed on paper is called
a "paper wallet," and there are many free tools that can be used to create them. I personally keep
the vast majority of my bitcoins (99% or more) stored on paper wallets, encrypted with BIP0038,
with multiple copies locked in safes. Keeping bitcoin offline is called cold storage and it is one of the
most effective security techniques. A cold storage system is one where the keys are generated on an
offline system (one never connected to the Internet) and stored offline either on paper or on digital
media, such as a USB memory stick.

Hardware Wallets

In the long term, bitcoin security increasingly will take the form of hardware tamper-proof wallets.
Unlike a smartphone or desktop computer, a bitcoin hardware wallet has just one purpose: to hold
bitcoins securely. Without general-purpose software to compromise and with limited interfaces,
hardware wallets can deliver an almost foolproof level of security to nonexpert users. I expect to
see hardware wallets become the predominant method of bitcoin storage. For an example of such a
hardware wallet, see the Trezor.

Balancing Risk

Although most users are rightly concerned about bitcoin theft, there is an even bigger risk. Data
files get lost all the time. If they contain bitcoin, the loss is much more painful. In the effort to
secure their bitcoin wallets, users must be very careful not to go too far and end up losing the
bitcoin. In July of 2011, a well-known bitcoin awareness and education project lost almost 7,000
bitcoins. In their effort to prevent theft, the owners had implemented a complex series of encrypted
backups. In the end they accidentally lost the encryption keys, making the backups worthless and
losing a fortune. Like hiding money by burying it in the desert, if you secure your bitcoin too well
you might not be able to find it again.

Diversifying Risk

Would you carry your entire net worth in cash in your wallet? Most people would consider that
reckless, yet bitcoin users often keep all their bitcoin in a single wallet. Instead, users should spread
the risk among multiple and diverse bitcoin wallets. Prudent users will keep only a small fraction,
perhaps less than 5%, of their bitcoins in an online or mobile wallet as "pocket change." The rest
should be split between a few different storage mechanisms, such as a desktop wallet and offline
(cold storage).

Multi-sig and Governance

Whenever a company or individual stores large amounts of bitcoin, they should consider using a
multi-signature bitcoin address. Multi-signature addresses secure funds by requiring more than
one signature to make a payment. The signing keys should be stored in a number of different
locations and under the control of different people. In a corporate environment, for example, the
keys should be generated independently and held by several company executives, to ensure no
single person can compromise the funds. Multi-signature addresses can also offer redundancy,
where a single person holds several keys that are stored in different locations.
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Survivability

One important security consideration that is often overlooked is availability, especially in the
context of incapacity or death of the key holder. Bitcoin users are told to use complex passwords
and keep their keys secure and private, not sharing them with anyone. Unfortunately, that practice
makes it almost impossible for the user’s family to recover any funds if the user is not available to
unlock them. In most cases, in fact, the families of bitcoin users might be completely unaware of the
existence of the bitcoin funds.

If you have a lot of bitcoin, you should consider sharing access details with a trusted relative or
lawyer. A more complex survivability scheme can be set up with multi-signature access and estate
planning through a lawyer specialized as a "digital asset executor."

Conclusion
Bitcoin is a completely new, unprecedented, and complex technology. Over time we will develop
better security tools and practices that are easier to use by nonexperts. For now, bitcoin users can
use many of the tips discussed here to enjoy a secure and trouble-free bitcoin experience.

Appendix A: Transaction Script Language
Operators, Constants, and Symbols
Push value onto stack shows operators for pushing values onto the stack.

Table 26. Push value onto stack

Symbol Value (hex) Description

OP_0 or OP_FALSE 0x00 An empty array is pushed onto
the stack

1-75 0x01-0x4b Push the next N bytes onto the
stack, where N is 1 to 75 bytes

OP_PUSHDATA1 0x4c The next script byte contains N,
push the following N bytes onto
the stack

OP_PUSHDATA2 0x4d The next two script bytes
contain N, push the following N
bytes onto the stack

OP_PUSHDATA4 0x4e The next four script bytes
contain N, push the following N
bytes onto the stack

OP_1NEGATE 0x4f Push the value "–1" onto the
stack
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Symbol Value (hex) Description

OP_RESERVED 0x50 Halt - Invalid transaction unless
found in an unexecuted OP_IF
clause

OP_1 or OP_TRUE 0x51 Push the value "1" onto the
stack

OP_2 to OP_16 0x52 to 0x60 For OP_N, push the value "N"
onto the stack. E.g., OP_2 pushes
"2"

Conditional flow control shows conditional flow control operators.

Table 27. Conditional flow control

Symbol Value (hex) Description

OP_NOP 0x61 Do nothing

OP_VER 0x62 Halt - Invalid transaction unless
found in an unexecuted OP_IF
clause

OP_IF 0x63 Execute the statements
following if top of stack is not 0

OP_NOTIF 0x64 Execute the statements
following if top of stack is 0

OP_VERIF 0x65 Halt - Invalid transaction

OP_VERNOTIF 0x66 Halt - Invalid transaction

OP_ELSE 0x67 Execute only if the previous
statements were not executed

OP_ENDIF 0x68 End the OP_IF, OP_NOTIF,
OP_ELSE block

OP_VERIFY 0x69 Check the top of the stack, halt
and invalidate transaction if not
TRUE

OP_RETURN 0x6a Halt and invalidate transaction

Stack operations shows operators used to manipulate the stack.

Table 28. Stack operations

Symbol Value (hex) Description

OP_TOALTSTACK 0x6b Pop top item from stack and
push to alternative stack

OP_FROMALTSTACK 0x6c Pop top item from alternative
stack and push to stack
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Symbol Value (hex) Description

OP_2DROP 0x6d Pop top two stack items

OP_2DUP 0x6e Duplicate top two stack items

OP_3DUP 0x6f Duplicate top three stack items

OP_2OVER 0x70 Copy the third and fourth items
in the stack to the top

OP_2ROT 0x71 Move the fifth and sixth items
in the stack to the top

OP_2SWAP 0x72 Swap the two top pairs of items
in the stack

OP_IFDUP 0x73 Duplicate the top item in the
stack if it is not 0

OP_DEPTH 0x74 Count the items on the stack
and push the resulting count

OP_DROP 0x75 Pop the top item in the stack

OP_DUP 0x76 Duplicate the top item in the
stack

OP_NIP 0x77 Pop the second item in the stack

OP_OVER 0x78 Copy the second item in the
stack and push it onto the top

OP_PICK 0x79 Pop value N from top, then copy
the Nth item to the top of the
stack

OP_ROLL 0x7a Pop value N from top, then
move the Nth item to the top of
the stack

OP_ROT 0x7b Rotate the top three items in the
stack

OP_SWAP 0x7c Swap the top three items in the
stack

OP_TUCK 0x7d Copy the top item and insert it
between the top and second
item.

String splice operations shows string operators.

Table 29. String splice operations

Symbol Value (hex) Description

OP_CAT 0x7e Disabled (concatenates top two
items)
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Symbol Value (hex) Description

OP_SUBSTR 0x7f Disabled (returns substring)

OP_LEFT 0x80 Disabled (returns left substring)

OP_RIGHT 0x81 Disabled (returns right
substring)

OP_SIZE 0x82 Calculate string length of top
item and push the result

Binary arithmetic and conditionals shows binary arithmetic and boolean logic operators.

Table 30. Binary arithmetic and conditionals

Symbol Value (hex) Description

OP_INVERT 0x83 Disabled (Flip the bits of the top
item)

OP_AND 0x84 Disabled (Boolean AND of two
top items)

OP_OR 0x85 Disabled (Boolean OR of two top
items)

OP_XOR 0x86 Disabled (Boolean XOR of two
top items)

OP_EQUAL 0x87 Push TRUE (1) if top two items
are exactly equal, push FALSE
(0) otherwise

OP_EQUALVERIFY 0x88 Same as OP_EQUAL, but run
OP_VERIFY after to halt if not
TRUE

OP_RESERVED1 0x89 Halt - Invalid transaction unless
found in an unexecuted OP_IF
clause

OP_RESERVED2 0x8a Halt - Invalid transaction unless
found in an unexecuted OP_IF
clause

Numeric operators shows numeric (arithmetic) operators.

Table 31. Numeric operators

Symbol Value (hex) Description

OP_1ADD 0x8b Add 1 to the top item

OP_1SUB 0x8c Subtract 1 from the top item

OP_2MUL 0x8d Disabled (multiply top item by
2)
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Symbol Value (hex) Description

OP_2DIV 0x8e Disabled (divide top item by 2)

OP_NEGATE 0x8f Flip the sign of top item

OP_ABS 0x90 Change the sign of the top item
to positive

OP_NOT 0x91 If top item is 0 or 1 Boolean flip
it, otherwise return 0

OP_0NOTEQUAL 0x92 If top item is 0 return 0,
otherwise return 1

OP_ADD 0x93 Pop top two items, add them
and push result

OP_SUB 0x94 Pop top two items, subtract first
from second, push result

OP_MUL 0x95 Disabled (multiply top two
items)

OP_DIV 0x96 Disabled (divide second item by
first item)

OP_MOD 0x97 Disabled (remainder divide
second item by first item)

OP_LSHIFT 0x98 Disabled (shift second item left
by first item number of bits)

OP_RSHIFT 0x99 Disabled (shift second item
right by first item number of
bits)

OP_BOOLAND 0x9a Boolean AND of top two items

OP_BOOLOR 0x9b Boolean OR of top two items

OP_NUMEQUAL 0x9c Return TRUE if top two items
are equal numbers

OP_NUMEQUALVERIFY 0x9d Same as NUMEQUAL, then
OP_VERIFY to halt if not TRUE

OP_NUMNOTEQUAL 0x9e Return TRUE if top two items
are not equal numbers

OP_LESSTHAN 0x9f Return TRUE if second item is
less than top item

OP_GREATERTHAN 0xa0 Return TRUE if second item is
greater than top item

OP_LESSTHANOREQUAL 0xa1 Return TRUE if second item is
less than or equal to top item
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Symbol Value (hex) Description

OP_GREATERTHANOREQUAL 0xa2 Return TRUE if second item is
great than or equal to top item

OP_MIN 0xa3 Return the smaller of the two
top items

OP_MAX 0xa4 Return the larger of the two top
items

OP_WITHIN 0xa5 Return TRUE if the third item is
between the second item (or
equal) and first item

Cryptographic and hashing operations shows cryptographic function operators.

Table 32. Cryptographic and hashing operations

Symbol Value (hex) Description

OP_RIPEMD160 0xa6 Return RIPEMD160 hash of top
item

OP_SHA1 0xa7 Return SHA1 hash of top item

OP_SHA256 0xa8 Return SHA256 hash of top item

OP_HASH160 0xa9 Return RIPEMD160(SHA256(x))
hash of top item

OP_HASH256 0xaa Return SHA256(SHA256(x))
hash of top item

OP_CODESEPARATOR 0xab Mark the beginning of
signature-checked data

OP_CHECKSIG 0xac Pop a public key and signature
and validate the signature for
the transaction’s hashed data,
return TRUE if matching

OP_CHECKSIGVERIFY 0xad Same as CHECKSIG, then
OP_VERIFY to halt if not TRUE

OP_CHECKMULTISIG 0xae Run CHECKSIG for each pair of
signature and public key
provided. All must match. Bug
in implementation pops an
extra value, prefix with OP_NOP
as workaround

OP_CHECKMULTISIGVERIFY 0xaf Same as CHECKMULTISIG, then
OP_VERIFY to halt if not TRUE

Non-operators shows nonoperator symbols
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Table 33. Non-operators

Symbol Value (hex) Description

OP_NOP1-OP_NOP10 0xb0-0xb9 Does nothing, ignored

Reserved OP codes for internal use by the parser shows operator codes reserved for use by the
internal script parser.

Table 34. Reserved OP codes for internal use by the parser

Symbol Value (hex) Description

OP_SMALLDATA 0xf9 Represents small data field

OP_SMALLINTEGER 0xfa Represents small integer data
field

OP_PUBKEYS 0xfb Represents public key fields

OP_PUBKEYHASH 0xfd Represents a public key hash
field

OP_PUBKEY 0xfe Represents a public key field

OP_INVALIDOPCODE 0xff Represents any OP code not
currently assigned

Appendix B: Bitcoin Improvement Proposals
Bitcoin improvement proposals are design documents providing information to the bitcoin
community, or describing a new feature for bitcoin or its processes or environment.

As per BIP0001 BIP Purpose and Guidelines, there are three kinds of BIP:

Standard BIP

Describes any change that affects most or all bitcoin implementations, such as a change to the
network protocol, a change in block or transaction validity rules, or any change or addition that
affects the interoperability of applications using bitcoin.

Informational BIP

Describes a bitcoin design issue, or provides general guidelines or information to the bitcoin
community, but does not propose a new feature. Informational BIPs do not necessarily represent
a bitcoin community consensus or recommendation, so users and implementors may ignore
informational BIPs or follow their advice.

Process BIP

Describes a bitcoin process, or proposes a change to (or an event in) a process. Process BIPs are
like standard BIPs but apply to areas other than the bitcoin protocol itself. They might propose
an implementation, but not to bitcoin’s codebase; they often require community consensus; and
unlike informational BIPs, they are more than recommendations, and users are typically not
free to ignore them. Examples include procedures, guidelines, changes to the decision-making
process, and changes to the tools or environment used in Bitcoin development. Any meta-BIP is
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also considered a process BIP.

Bitcoin improvement proposals are recorded in a versioned repository on GitHub. Snapshot of BIPs
shows a snapshot of BIPs in the Fall of 2014. Consult the authoritative repository for up-to-date
information on existing BIPs and their contents.

Table 35. Snapshot of BIPs

BIP# Link Title Owner Type Status

1 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0001.mediawik
i

BIP Purpose
and Guidelines

Amir Taaki Standard Active

10 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0010.mediawik
i

Multi-Sig
Transaction
Distribution

Alan Reiner Informational Draft

11 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0011.mediawik
i

M-of-N
Standard
Transactions

Gavin
Andresen

Standard Accepted

12 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0012.mediawik
i

OP_EVAL Gavin
Andresen

Standard Withdrawn

13 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0013.mediawik
i

Address
Format for pay-
to-script-hash

Gavin
Andresen

Standard Final

14 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0014.mediawik
i

Protocol
Version and
User Agent

Amir Taaki,
Patrick
Strateman

Standard Accepted
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BIP# Link Title Owner Type Status

15 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0015.mediawik
i

Aliases Amir Taaki Standard Withdrawn

16 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0016.mediawik
i

Pay To Script
Hash

Gavin
Andresen

Standard Accepted

17 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0017.mediawik
i

OP_CHECKHAS
HVERIFY (CHV)

Luke Dashjr Withdrawn Draft

18 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0018.mediawik
ilink:

hashScriptChec
k

Luke Dashjr Standard Draft

19 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0019.mediawik
i

M-of-N
Standard
Transactions
(Low SigOp)

Luke Dashjr Standard Draft

20 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0020.mediawik
i

URI Scheme Luke Dashjr Standard Replaced

21 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0021.mediawik
i

URI Scheme Nils Schneider,
Matt Corallo

Standard Accepted
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BIP# Link Title Owner Type Status

22 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0022.mediawik
i

getblocktempla
te -
Fundamentals

Luke Dashjr Standard Accepted

23 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0023.mediawik
i

getblocktempla
te - Pooled
Mining

Luke Dashjr Standard Accepted

30 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0030.mediawik
i

Duplicate
transactions

Pieter Wuille Standard Accepted

31 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0031.mediawik
i

Pong message Mike Hearn Standard Accepted

32 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0032.mediawik
i

Hierarchical
Deterministic
Wallets

Pieter Wuille Informational Accepted

33 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0033.mediawik
i

Stratized Nodes Amir Taaki Standard Draft

34 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0034.mediawik
i

Block v2,
Height in
coinbase

Gavin
Andresen

Standard Accepted
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BIP# Link Title Owner Type Status

35 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0035.mediawik
i

mempool
message

Jeff Garzik Standard Accepted

36 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0036.mediawik
i

Custom
Services

Stefan Thomas Standard Draft

37 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0037.mediawik
i

Bloom filtering Mike Hearn
and Matt
Corallo

Standard Accepted

38 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0038.mediawik
i

Passphrase-
protected
private key

Mike Caldwell Standard Draft

39 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0039.mediawik
i

Mnemonic
code for
generating
deterministic
keys

Slush Standard Draft

40 Stratum wire
protocol

Slush Standard BIP number
allocated

41 Stratum
mining
protocol

Slush Standard BIP number
allocated

42 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0042.mediawik
i

A finite
monetary
supply for
bitcoin

Pieter Wuille Standard Draft
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BIP# Link Title Owner Type Status

43 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0043.mediawik
i

Purpose Field
for
Deterministic
Wallets

Slush Standard Draft

44 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0044.mediawik
i

Multi-Account
Hierarchy for
Deterministic
Wallets

Slush Standard Draft

50 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0050.mediawik
i

March 2013
Chain Fork
Post-Mortem

Gavin
Andresen

Informational Draft

60 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0060.mediawik
i

Fixed Length
"version"
Message
(Relay-
Transactions
Field)

Amir Taaki Standard Draft

61 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0061.mediawik
i

"reject" P2P
message

Gavin
Andresen

Standard Draft

62 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0062.mediawik
i

Dealing with
malleability

Pieter Wuille Standard Draft

63 Stealth
Addresses

Peter Todd Standard BIP number
allocated
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BIP# Link Title Owner Type Status

64 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0064.mediawik
i

getutxos
message

Mike Hearn Standard Draft

70 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0070.mediawik
i

Payment
protocol

Gavin
Andresen

Standard Draft

71 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0071.mediawik
i

Payment
protocol MIME
types

Gavin
Andresen

Standard Draft

72 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0072.mediawik
i

Payment
protocol URIs

Gavin
Andresen

Standard Draft

73 https://github.c
om/bitcoin/
bips/blob/
master/bip-
0073.mediawik
i

Use "Accept"
header with
Payment
Request URLs

Stephen Pair Standard Draft

Appendix C: pycoin, ku, and tx
The Python library pycoin, originally written and maintained by Richard Kiss, is a Python-based
library that supports manipulation of bitcoin keys and transactions, even supporting the scripting
language enough to properly deal with nonstandard transactions.

The pycoin library supports both Python 2 (2.7.x) and Python 3 (after 3.3), and comes with some
handy command-line utilities, ku and tx.

Key Utility (KU)
The command-line utility ku ("key utility") is a Swiss Army knife for manipulating keys. It supports
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BIP32 keys, WIF, and addresses (bitcoin and alt coins). Following are some examples.

Create a BIP32 key using the default entropy sources of GPG and /dev/random:

$ ku create

input           : create
network         : Bitcoin
wallet key      :
xprv9s21ZrQH143K3LU5ctPZTBnb9kTjA5Su9DcWHvXJemiJBsY7VqXUG7hipgdWaU
                    m2nhnzdvxJf5KJo9vjP2nABX65c5sFsWsV8oXcbpehtJi
public version  :
xpub661MyMwAqRbcFpYYiuvZpKjKhnJDZYAkWSY76JvvD7FH4fsG3Nqiov2CfxzxY8
                    DGcpfT56AMFeo8M8KPkFMfLUtvwjwb6WPv8rY65L2q8Hz
tree depth      : 0
fingerprint     : 9d9c6092
parent f'print  : 00000000
child index     : 0
chain code      : 80574fb260edaa4905bc86c9a47d30c697c50047ed466c0d4a5167f6821e8f3c
private key     : yes
secret exponent :
112471538590155650688604752840386134637231974546906847202389294096567806844862
 hex            : f8a8a28b28a916e1043cc0aca52033a18a13cab1638d544006469bc171fddfbe
wif             : L5Z54xi6qJusQT42JHA44mfPVZGjyb4XBRWfxAzUWwRiGx1kV4sP
 uncompressed   : 5KhoEavGNNH4GHKoy2Ptu4KfdNp4r56L5B5un8FP6RZnbsz5Nmb
public pair x   :
76460638240546478364843397478278468101877117767873462127021560368290114016034
public pair y   :
59807879657469774102040120298272207730921291736633247737077406753676825777701
 x as hex       : a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
 y as hex       : 843a0f6ed9c0eb1962c74533795406914fe3f1957c5238951f4fe245a4fcd625
y parity        : odd
key pair as sec :
03a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
 uncompressed   :
04a90b3008792432060fa04365941e09a8e4adf928bdbdb9dad41131274e379322
 
843a0f6ed9c0eb1962c74533795406914fe3f1957c5238951f4fe245a4fcd625
hash160         : 9d9c609247174ae323acfc96c852753fe3c8819d
 uncompressed   : 8870d869800c9b91ce1eb460f4c60540f87c15d7
Bitcoin address : 1FNNRQ5fSv1wBi5gyfVBs2rkNheMGt86sp
 uncompressed   : 1DSS5isnH4FsVaLVjeVXewVSpfqktdiQAM

Create a BIP32 key from a passphrase:

WARNING The passphrase in this example is way too easy to guess.
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$ ku P:foo

input           : P:foo
network         : Bitcoin
wallet key      : xprv9s21ZrQH143K31AgNK5pyVvW23gHnkBq2wh5aEk6g1s496M8ZMjxncCKZKgb5j
                    ZoY5eSJMJ2Vbyvi2hbmQnCuHBujZ2WXGTux1X2k9Krdtq
public version  : xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtS
                    VYFvXz2vPPpbXE1qpjoUFidhjFj82pVShWu9curWmb2zy
tree depth      : 0
fingerprint     : 5d353a2e
parent f'print  : 00000000
child index     : 0
chain code      : 5eeb1023fd6dd1ae52a005ce0e73420821e1d90e08be980a85e9111fd7646bbc
private key     : yes
secret exponent :
65825730547097305716057160437970790220123864299761908948746835886007793998275
 hex            : 91880b0e3017ba586b735fe7d04f1790f3c46b818a2151fb2def5f14dd2fd9c3
wif             : L26c3H6jEPVSqAr1usXUp9qtQJw6NHgApq6Ls4ncyqtsvcq2MwKH
 uncompressed   : 5JvNzA5vXDoKYJdw8SwwLHxUxaWvn9mDea6k1vRPCX7KLUVWa7W
public pair x   :
81821982719381104061777349269130419024493616650993589394553404347774393168191
public pair y   :
58994218069605424278320703250689780154785099509277691723126325051200459038290
 x as hex       : b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
 y as hex       : 826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52
y parity        : even
key pair as sec : 02b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
 uncompressed   : 04b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f
                    826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52
hash160         : 5d353a2ecdb262477172852d57a3f11de0c19286
 uncompressed   : e5bd3a7e6cb62b4c820e51200fb1c148d79e67da
Bitcoin address : 19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii
 uncompressed   : 1MwkRkogzBRMehBntgcq2aJhXCXStJTXHT

Get info as JSON:

$ ku P:foo -P -j
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{
   "y_parity": "even",
   "public_pair_y_hex":
"826d8b4d3010aea16ff4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52",
   "private_key": "no",
   "parent_fingerprint": "00000000",
   "tree_depth": "0",
   "network": "Bitcoin",
   "btc_address_uncompressed": "1MwkRkogzBRMehBntgcq2aJhXCXStJTXHT",
   "key_pair_as_sec_uncompressed":
"04b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f826d8b4d3010aea16ff
4c1c1d3ae68541d9a04df54a2c48cc241c2983544de52",
   "public_pair_x_hex":
"b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f",
   "wallet_key":
"xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtSVYFvXz2vPPpbXE1qpjo
UFidhjFj82pVShWu9curWmb2zy",
   "chain_code": "5eeb1023fd6dd1ae52a005ce0e73420821e1d90e08be980a85e9111fd7646bbc",
   "child_index": "0",
   "hash160_uncompressed": "e5bd3a7e6cb62b4c820e51200fb1c148d79e67da",
   "btc_address": "19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii",
   "fingerprint": "5d353a2e",
   "hash160": "5d353a2ecdb262477172852d57a3f11de0c19286",
   "input": "P:foo",
   "public_pair_x":
"81821982719381104061777349269130419024493616650993589394553404347774393168191",
   "public_pair_y":
"58994218069605424278320703250689780154785099509277691723126325051200459038290",
   "key_pair_as_sec":
"02b4e599dfa44555a4ed38bcfff0071d5af676a86abf123c5b4b4e8e67a0b0b13f"
}

Public BIP32 key:

$ ku -w -P P:foo
xpub661MyMwAqRbcFVF9ULcqLdsEa5WnCCugQAcgNd9iEMQ31tgH6u4DLQWoQayvtSVYFvXz2vPPpbXE1qpjoU
FidhjFj82pVShWu9curWmb2zy

Generate a subkey:

$ ku -w -s3/2 P:foo
xprv9wTErTSkjVyJa1v4cUTFMFkWMe5eu8ErbQcs9xajnsUzCBT7ykHAwdrxvG3g3f6BFk7ms5hHBvmbdutNmy
g6iogWKxx6mefEw4M8EroLgKj
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Hardened subkey:

$ ku -w -s3/2H P:foo
xprv9wTErTSu5AWGkDeUPmqBcbZWX1xq85ZNX9iQRQW9DXwygFp7iRGJo79dsVctcsCHsnZ3XU3DhsuaGZbDh8
iDkBN45k67UKsJUXM1JfRCdn1

WIF:

$ ku -W P:foo
L26c3H6jEPVSqAr1usXUp9qtQJw6NHgApq6Ls4ncyqtsvcq2MwKH

Address:

$ ku -a P:foo
19Vqc8uLTfUonmxUEZac7fz1M5c5ZZbAii

Generate a bunch of subkeys:

$ ku P:foo -s 0/0-5 -w
xprv9xWkBDfyBXmZjBG9EiXBpy67KK72fphUp9utJokEBFtjsjiuKUUDF5V3TU8U8cDzytqYnSekc8bYuJS8G3
bhXxKWB89Ggn2dzLcoJsuEdRK
xprv9xWkBDfyBXmZnzKf3bAGifK593gT7WJZPnYAmvc77gUQVej5QHckc5Adtwxa28ACmANi9XhCrRvtFqQcUx
t8rUgFz3souMiDdWxJDZnQxzx
xprv9xWkBDfyBXmZqdXA8y4SWqfBdy71gSW9sjx9JpCiJEiBwSMQyRxan6srXUPBtj3PTxQFkZJAiwoUpmvtrx
KZu4zfsnr3pqyy2vthpkwuoVq
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuqxYGpHfv9cnGj5P7e8Esk
pzKL1Y8Gk9aX6QbryA5raK73p
xprv9xWkBDfyBXmZv2q3N66hhZ8DAcEnQDnXML1J62krJAcf7Xb1HJwuW2VMJQrCofY2jtFXdiEY8UsRNJfqK6
DAdyZXoMvtaLHyWQx3FS4A9zw
xprv9xWkBDfyBXmZw4jEYXUHYc9fT25k9irP87n2RqfJ5bqbjKdT84Mm7Wtc2xmzFuKg7iYf7XFHKkSsaYKWKJ
bR54bnyAD9GzjUYbAYTtN4ruo

Generate the corresponding addresses:
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$ ku P:foo -s 0/0-5 -a
1MrjE78H1R1rqdFrmkjdHnPUdLCJALbv3x
1AnYyVEcuqeoVzH96zj1eYKwoWfwte2pxu
1GXr1kZfxE1FcK6ZRD5sqqqs5YfvuzA1Lb
116AXZc4bDVQrqmcinzu4aaPdrYqvuiBEK
1Cz2rTLjRM6pMnxPNrRKp9ZSvRtj5dDUML
1WstdwPnU6HEUPme1DQayN9nm6j7nDVEM

Generate the corresponding WIFs:

$ ku P:foo -s 0/0-5 -W
L5a4iE5k9gcJKGqX3FWmxzBYQc29PvZ6pgBaePLVqT5YByEnBomx
Kyjgne6GZwPGB6G6kJEhoPbmyjMP7D5d3zRbHVjwcq4iQXD9QqKQ
L4B3ygQxK6zH2NQGxLDee2H9v4Lvwg14cLJW7QwWPzCtKHdWMaQz
L2L2PZdorybUqkPjrmhem4Ax5EJvP7ijmxbNoQKnmTDMrqemY8UF
L2oD6vA4TUyqPF8QG4vhUFSgwCyuuvFZ3v8SKHYFDwkbM765Nrfd
KzChTbc3kZFxUSJ3Kt54cxsogeFAD9CCM4zGB22si8nfKcThQn8C

Check that it works by choosing a BIP32 string (the one corresponding to subkey 0/3):

$ ku -W
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuqxYGpHfv9cnGj5P7e8Esk
pzKL1Y8Gk9aX6QbryA5raK73p
L2L2PZdorybUqkPjrmhem4Ax5EJvP7ijmxbNoQKnmTDMrqemY8UF
$ ku -a
xprv9xWkBDfyBXmZsA85GyWj9uYPyoQv826YAadKWMaaEosNrFBKgj2TqWuiWY3zuqxYGpHfv9cnGj5P7e8Esk
pzKL1Y8Gk9aX6QbryA5raK73p
116AXZc4bDVQrqmcinzu4aaPdrYqvuiBEK

Yep, looks familiar.

From secret exponent:

239



$ ku 1

input           : 1
network         : Bitcoin
secret exponent : 1
 hex            : 1
wif             : KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU73sVHnoWn
 uncompressed   : 5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip4nEB3kEsreAnchuDf
public pair x   :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y   :
32670510020758816978083085130507043184471273380659243275938904335757337482424
 x as hex       : 79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 y as hex       : 483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity        : even
key pair as sec : 0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 uncompressed   : 0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
                    483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160         : 751e76e8199196d454941c45d1b3a323f1433bd6
 uncompressed   : 91b24bf9f5288532960ac687abb035127b1d28a5
Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
 uncompressed   : 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

Litecoin version:

$ ku -nL 1

input            : 1
network          : Litecoin
secret exponent  : 1
 hex             : 1
wif              : T33ydQRKp4FCW5LCLLUB7deioUMoveiwekdwUwyfRDeGZm76aUjV
 uncompressed    : 6u823ozcyt2rjPH8Z2ErsSXJB5PPQwK7VVTwwN4mxLBFrao69XQ
public pair x    :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y    :
32670510020758816978083085130507043184471273380659243275938904335757337482424
 x as hex        : 79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 y as hex        : 483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity         : even
key pair as sec  : 0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 uncompressed    : 0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
                     483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160          : 751e76e8199196d454941c45d1b3a323f1433bd6
 uncompressed    : 91b24bf9f5288532960ac687abb035127b1d28a5
Litecoin address : LVuDpNCSSj6pQ7t9Pv6d6sUkLKoqDEVUnJ
 uncompressed    : LYWKqJhtPeGyBAw7WC8R3F7ovxtzAiubdM
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Dogecoin WIF:

$ ku -nD -W 1
QNcdLVw8fHkixm6NNyN6nVwxKek4u7qrioRbQmjxac5TVoTtZuot

From public pair (on Testnet):

$ ku -nT
55066263022277343669578718895168534326250603453777594175500187360389116729240,even

input                   :
550662630222773436695787188951685343262506034537775941755001873603
                            89116729240,even
network                 : Bitcoin testnet
public pair x           :
55066263022277343669578718895168534326250603453777594175500187360389116729240
public pair y           :
32670510020758816978083085130507043184471273380659243275938904335757337482424
 x as hex               :
79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 y as hex               :
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
y parity                : even
key pair as sec         :
0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 uncompressed           :
0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
 
483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
hash160                 : 751e76e8199196d454941c45d1b3a323f1433bd6
 uncompressed           : 91b24bf9f5288532960ac687abb035127b1d28a5
Bitcoin testnet address : mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r
 uncompressed           : mtoKs9V381UAhUia3d7Vb9GNak8Qvmcsme

From hash160:

$ ku 751e76e8199196d454941c45d1b3a323f1433bd6

input           : 751e76e8199196d454941c45d1b3a323f1433bd6
network         : Bitcoin
hash160         : 751e76e8199196d454941c45d1b3a323f1433bd6
Bitcoin address : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH
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As a Dogecoin address:

$ ku -nD 751e76e8199196d454941c45d1b3a323f1433bd6

input            : 751e76e8199196d454941c45d1b3a323f1433bd6
network          : Dogecoin
hash160          : 751e76e8199196d454941c45d1b3a323f1433bd6
Dogecoin address : DFpN6QqFfUm3gKNaxN6tNcab1FArL9cZLE

Transaction Utility (TX)

The command-line utility tx will display transactions in human-readable form, fetch base
transactions from pycoin’s transaction cache or from web services (blockchain.info, blockr.io, and
biteasy.com are currently supported), merge transactions, add or delete inputs or outputs, and sign
transactions.

Following are some examples.

View the famous "pizza" transaction [PIZZA]:

$ tx 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
warning: consider setting environment variable PYCOIN_CACHE_DIR=~/.pycoin_cache to
cache transactions fetched via web services
warning: no service providers found for get_tx; consider setting environment
variable PYCOIN_SERVICE_PROVIDERS=BLOCKR_IO:BLOCKCHAIN_INFO:BITEASY:BLOCKEXPLORER
usage: tx [-h] [-t TRANSACTION_VERSION] [-l LOCK_TIME] [-n NETWORK] [-a]
          [-i address] [-f path-to-private-keys] [-g GPG_ARGUMENT]
          [--remove-tx-in tx_in_index_to_delete]
          [--remove-tx-out tx_out_index_to_delete] [-F transaction-fee] [-u]
          [-b BITCOIND_URL] [-o path-to-output-file]
          argument [argument ...]
tx: error: can't find Tx with id
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a

Oops! We don’t have web services set up. Let’s do that now:

$ PYCOIN_CACHE_DIR=~/.pycoin_cache
$ PYCOIN_SERVICE_PROVIDERS=BLOCKR_IO:BLOCKCHAIN_INFO:BITEASY:BLOCKEXPLORER
$ export PYCOIN_CACHE_DIR PYCOIN_SERVICE_PROVIDERS

It’s not done automatically so a command-line tool won’t leak potentially private information about
what transactions you’re interested in to a third-party website. If you don’t care, you could put
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these lines into your .profile.

Let’s try again:

$ tx 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
Version:  1  tx hash
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a  159 bytes
TxIn count: 1; TxOut count: 1
Lock time: 0 (valid anytime)
Input:
  0:                          (unknown) from
1e133f7de73ac7d074e2746a3d6717dfc99ecaa8e9f9fade2cb8b0b20a5e0441:0
Output:
  0: 1CZDM6oTttND6WPdt3D6bydo7DYKzd9Qik receives 10000000.00000 mBTC
Total output 10000000.00000 mBTC
including unspents in hex dump since transaction not fully signed
010000000141045e0ab2b0b82cdefaf9e9a8ca9ec9df17673d6a74e274d0c73ae77d3f131e00000000
4a493046022100a7f26eda874931999c90f87f01ff1ffc76bcd058fe16137e0e63fdb6a35c2d780221
00a61e9199238eb73f07c8f209504c84b80f03e30ed8169edd44f80ed17ddf451901ffffffff010010
a5d4e80000001976a9147ec1003336542cae8bded8909cdd6b5e48ba0ab688ac00000000

** can't validate transaction as source transactions missing

The final line appears because to validate the transactions' signatures, you technically need the
source transactions. So let’s add -a to augment the transactions with source information:

243



$ tx -a 49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a
warning: transaction fees recommendations casually calculated and estimates may be
incorrect
warning: transaction fee lower than (casually calculated) expected value of 0.1
mBTC, transaction might not propogate
Version:  1  tx hash
49d2adb6e476fa46d8357babf78b1b501fd39e177ac7833124b3f67b17c40c2a  159 bytes
TxIn count: 1; TxOut count: 1
Lock time: 0 (valid anytime)
Input:
  0: 17WFx2GQZUmh6Up2NDNCEDk3deYomdNCfk from
1e133f7de73ac7d074e2746a3d6717dfc99ecaa8e9f9fade2cb8b0b20a5e0441:0 10000000.00000
mBTC  sig ok
Output:
  0: 1CZDM6oTttND6WPdt3D6bydo7DYKzd9Qik receives 10000000.00000 mBTC
Total input  10000000.00000 mBTC
Total output 10000000.00000 mBTC
Total fees        0.00000 mBTC

010000000141045e0ab2b0b82cdefaf9e9a8ca9ec9df17673d6a74e274d0c73ae77d3f131e00000000
4a493046022100a7f26eda874931999c90f87f01ff1ffc76bcd058fe16137e0e63fdb6a35c2d780221
00a61e9199238eb73f07c8f209504c84b80f03e30ed8169edd44f80ed17ddf451901ffffffff010010
a5d4e80000001976a9147ec1003336542cae8bded8909cdd6b5e48ba0ab688ac00000000

all incoming transaction values validated

Now, let’s look at unspent outputs for a specific address (UTXO). In block #1, we see a coinbase
transaction to 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX. Let’s use fetch_unspent to find all coins in
this address:

244



$ fetch_unspent 12c6DSiU4Rq3P4ZxziKxzrL5LmMBrzjrJX
a3a6f902a51a2cbebede144e48a88c05e608c2cce28024041a5b9874013a1e2a/0/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/333000
cea36d008badf5c7866894b191d3239de9582d89b6b452b596f1f1b76347f8cb/31/76a914119b098e
2e980a229e139a9ed01a469e518e6f2688ac/10000
065ef6b1463f552f675622a5d1fd2c08d6324b4402049f68e767a719e2049e8d/86/76a914119b098e
2e980a229e139a9ed01a469e518e6f2688ac/10000
a66dddd42f9f2491d3c336ce5527d45cc5c2163aaed3158f81dc054447f447a2/0/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/10000
ffd901679de65d4398de90cefe68d2c3ef073c41f7e8dbec2fb5cd75fe71dfe7/0/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/100
d658ab87cc053b8dbcfd4aa2717fd23cc3edfe90ec75351fadd6a0f7993b461d/5/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/911
36ebe0ca3237002acb12e1474a3859bde0ac84b419ec4ae373e63363ebef731c/1/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/100000
fd87f9adebb17f4ebb1673da76ff48ad29e64b7afa02fda0f2c14e43d220fe24/0/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/1
dfdf0b375a987f17056e5e919ee6eadd87dad36c09c4016d4a03cea15e5c05e3/1/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/1337
cb2679bfd0a557b2dc0d8a6116822f3fcbe281ca3f3e18d3855aa7ea378fa373/0/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/1337
d6be34ccf6edddc3cf69842dce99fe503bf632ba2c2adb0f95c63f6706ae0c52/1/76a914119b098e2
e980a229e139a9ed01a469e518e6f2688ac/2000000
 
0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098/0/410496b538e8535
19c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e
62294721166bf621e73a82cbf2342c858eeac/5000000000

Appendix D: Bitcoin Explorer (bx)
Commands

Usage: bx COMMAND [--help]

Info: The bx commands are:

address-decode
address-embed
address-encode
address-validate
base16-decode
base16-encode
base58-decode
base58-encode
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base58check-decode
base58check-encode
base64-decode
base64-encode
bitcoin160
bitcoin256
btc-to-satoshi
ec-add
ec-add-secrets
ec-multiply
ec-multiply-secrets
ec-new
ec-to-address
ec-to-public
ec-to-wif
fetch-balance
fetch-header
fetch-height
fetch-history
fetch-stealth
fetch-tx
fetch-tx-index
hd-new
hd-private
hd-public
hd-to-address
hd-to-ec
hd-to-public
hd-to-wif
help
input-set
input-sign
input-validate
message-sign
message-validate
mnemonic-decode
mnemonic-encode
ripemd160
satoshi-to-btc
script-decode
script-encode
script-to-address
seed
send-tx
send-tx-node
send-tx-p2p
settings
sha160
sha256
sha512
stealth-decode
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stealth-encode
stealth-public
stealth-secret
stealth-shared
tx-decode
tx-encode
uri-decode
uri-encode
validate-tx
watch-address
wif-to-ec
wif-to-public
wrap-decode
wrap-encode

For more information, see the Bitcoin Explorer home page and Bitcoin Explorer user
documentation.

Examples of bx command use
Let’s look at some examples of using Bitcoin Explorer commands to experiment with keys and
addresses:

Generate a random "seed" value using the seed command, which uses the operating system’s
random number generator. Pass the seed to the ec-new command to generate a new private key. We
save the standard output into the file private_key:

$ bx seed | bx ec-new > private_key
$ cat private_key
73096ed11ab9f1db6135857958ece7d73ea7c30862145bcc4bbc7649075de474

Now, generate the public key from that private key using the ec-to-public command. We pass the
private_key file into the standard input and save the standard output of the command into a new
file public_key:

$ bx ec-to-public < private_key > public_key
$ cat public_key
02fca46a6006a62dfdd2dbb2149359d0d97a04f430f12a7626dd409256c12be500

We can reformat the public_key as an address using the ec-to-address command. We pass the
public_key into standard input:

$ bx ec-to-address < public_key
17re1S4Q8ZHyCP8Kw7xQad1Lr6XUzWUnkG

Keys generated in this manner produce a type-0 nondeterministic wallet. That means that each key
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is generated from an independent seed. Bitcoin Explorer commands can also generate keys
deterministically, in accordance with BIP0032. In this case, a "master" key is created from a seed
and then extended deterministically to produce a tree of subkeys, resulting in a type-2 deterministic
wallet.

First, we we use the seed and hd-new commands to generate a master key that will be used as the
basis to derive a hierarchy of keys.

$ bx seed > seed
$ cat seed
eb68ee9f3df6bd4441a9feadec179ff1

$ bx hd-new < seed > master
$ cat master
xprv9s21ZrQH143K2BEhMYpNQoUvAgiEjArAVaZaCTgsaGe6LsAnwubeiTcDzd23mAoyizm9cApe51gNfLMkBq
kYoWWMCRwzfuJk8RwF1SVEpAQ

We now use the hd-private command to generate a hardened "account" key and a sequence of two
private keys within the account.

$ bx hd-private --hard < master > account
$ cat account
xprv9vkDLt81dTKjwHB8fsVB5QK8cGnzveChzSrtCfvu3aMWvQaThp59ueufuyQ8Qi3qpjk4aKsbmbfxwcgS8P
YbgoR2NWHeLyvg4DhoEE68A1n

$ bx hd-private --index 0 < account
xprv9xHfb6w1vX9xgZyPNXVgAhPxSsEkeRcPHEUV5iJcVEsuUEACvR3NRY3fpGhcnBiDbvG4LgndirDsia1e9F
3DWPkX7Tp1V1u97HKG1FJwUpU

$ bx hd-private --index 1 < account
xprv9xHfb6w1vX9xjc8XbN4GN86jzNAZ6xHEqYxzbLB4fzHFd6VqCLPGRZFsdjsuMVERadbgDbziCRJru9n6tz
EWrASVpEdrZrFidt1RDfn4yA3

Next we use the hd-public command to generate the corresponding sequence of two public keys.

$ bx hd-public --index 0 < account
xpub6BH1zcTuktiFu43rUZ2gXqLgzu5F3tLEeTQ5t6iE3aQtM2VMTxMcyLN9fYHiGhGpQe9QQYmqL2eYPFJ3ve
zHz5wzaSW4FiGrseNDR4LKqTy

$ bx hd-public --index 1 < account
xpub6BH1zcTuktiFx6CzhPbGjG3UYQ13WR16CmtbPiagEKpEVtpyjshWyMaMV1cn7nUPUkgQHPVXJVqsrA8xWb
GQDhohEcDFTEYMvYzwRD7Juf8

The public keys can also be derived from their corresponding private keys using the hd-to-public
command.

248



$ bx hd-private --index 0 < account | bx hd-to-public
xpub6BH1zcTuktiFu43rUZ2gXqLgzu5F3tLEeTQ5t6iE3aQtM2VMTxMcyLN9fYHiGhGpQe9QQYmqL2eYPFJ3ve
zHz5wzaSW4FiGrseNDR4LKqTy

$ bx hd-private --index 1 < account | bx hd-to-public
xpub6BH1zcTuktiFx6CzhPbGjG3UYQ13WR16CmtbPiagEKpEVtpyjshWyMaMV1cn7nUPUkgQHPVXJVqsrA8xWb
GQDhohEcDFTEYMvYzwRD7Juf8

We can generate a practically limitless number of keys in a deterministic chain, all derived from a
single seed. This technique is used in many wallet applications to generate keys that can be backed
up and restored with a single seed value. This is easier than having to back up the wallet with all its
randomly generated keys every time a new key is created.

The seed can be encoded using the mnemonic-encode command.

$ bx hd-mnemonic < seed > words
adore repeat vision worst especially veil inch woman cast recall dwell appreciate

The seed can then be decoded using the mnemonic-decode command.

$ bx mnemonic-decode < words
eb68ee9f3df6bd4441a9feadec179ff1

Mnemonic encoding can make the seed easier to record and even remember.

Index

Colophon
The animal on the cover of Mastering Bitcoin is a leafcutter ant (Atta colombica). The leafcutter ant,
a nongeneric name, are tropical, fungus-growing ants endemic to South and Central America,
Mexico, and southern United States. Aside from humans, leafcutter ants form the largest and most
complex animal societies on the planet. They are named for the way they chew leaves, which serve
as nutrition for their fungal garden.

Winged ants, both male and female, take part in a mass exit of their nest known as the revoada, or a
nuptial flight. Females mate with multiple males to collect the 300 million sperm necessary to set up
a colony. Females also store bits of the parental fungus garden mycelium in the infrabuccal pocket
located in their oral cavity; they will use this to start their own fungal gardens. Once grounded, the
female loses its wings and sets up an underground lair for her colony. The success rate for new
queens is low: 2.5% establish a long-lived colony.

Once a colony has matured, ants are divided into castes based on size, with each caste performing
various functions. There are usually four castes: minims, the smallest workers that tend to the
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young and fungus gardens; minors, slightly larger than minima, are the first line of defense for the
colony and patrol the surrounding terrain and attack enemies; mediae, the general foragers that cut
leaves and bring back leaf fragments to the nest; and majors, the largest worker ants that act as
soldiers, defending the nest from intruders. Recent research has shown that majors also clear main
foraging trails and carry bulky items back to the nest.

Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To
learn more about how you can help, go to animals.oreilly.com.

The cover image is from Insects Abroad. The cover fonts are URW Typewriter and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.
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